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RC Filter Design for Wireless Power Transfer:

A Fourier Series Approach
Constantinos Psomas, Senior Member, IEEE, and Ioannis Krikidis, Fellow, IEEE

Abstract—In this letter, we study the impact of the low-pass
resistor-capacitor (RC) filter on radio frequency (RF) wireless
power transfer (WPT). The RC filter influences both the RF
bandwidth by removing the harmonics as well as the ripple
voltage at the output of the rectifier. In particular, a large (small)
RC time constant, reduces (increases) the ripple but decreases
(enhances) the direct-current (DC) component. By following
a Fourier series approach, we obtain closed-form expressions
for the rectifier’s output voltage, the RC filter’s output as
well as the DC voltage. Our analytical framework provides a
complete characterization of the RC filter’s impact on the WPT
performance. We show that this complete and tractable analytical
framework is suitable for the proper design of the RC filter in
WPT systems.

Index Terms—RC filter, rectenna modeling, wireless power
transfer.

I. INTRODUCTION

Far-field wireless power transfer (WPT) relates to energy

harvesting via radio-frequency (RF) signals, where in con-

trast to conventional energy harvesting techniques (i.e., from

renewable sources), it is a continuous, controllable and on-

demand process [1]. Its efficiency relies on a appropriate

end-to-end design of both the transmitter and the receiver.

Strictly speaking, the aim is to increase the ratio between

the RF power harvested at the receiver over the one emitted

by the transmitter. An important element of the receiver’s

rectifier is the low-pass resistor-capacitor (RC) filter [2], [3].

Indeed, the RC filter limits the RF bandwidth of the circuit by

removing the harmonics but also controls the ripple voltage at

the rectifier’s output.

However, existing works do not discuss the impact of the RC

filter on the WPT performance but mainly focus on the wave-

form design and the non-linearities of the rectifying circuit.

Particularly, the work in [4] shows experimentally that wave-

forms with high peak-to-average power ratio (PAPR) increase

the rectifier’s RF to direct-current (DC) conversion efficiency.

A theoretical study on multisine waveform design for WPT is

considered in [5], which proposes a non-linear rectenna model

and, by assuming perfect channel state information, uses it to

design multisine waveforms that increase the WPT efficiency.

In [6], a low-complexity tone-index modulation technique is

proposed, which exploits multisine waveforms for WPT and

embeds information in the number of tones. Also, the work in

[7], focuses on the waveform’s optimal input distribution that

maximizes the information transfer conditioned on the mini-

mum RF harvesting. However, the aforementioned theoretical
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Fig. 1. The rectenna model consisting of an antenna, a matching network, a
rectifier and a low-pass RC filter.

studies assume that the RC time constant is very large and

neglect its effect on the energy harvesting. On the other hand,

some efforts were made in [2] to study the effects of the RC

filter. Nevertheless, these were shown experimentally and no

theoretical investigation has been undertaken so far.

Motivated by this, in this paper, we develop a mathematical

framework to address this gap. In particular, we deal with

a simple point-to-point WPT setup, where the destination

harvests energy from the source’s RF signal. Our focus lies

on rectenna modeling and the impact of the low-pass RC filter

on the energy harvesting. Following a mathematical approach

based on Fourier analysis, allows us to derive closed-form

expressions for the rectifier’s output voltage, the RC filter’s

output as well as the DC voltage. Our analysis accurately

captures the trade-off between the ripple voltage and the DC

component in terms of the RC time constant. To the best of

our knowledge, the developed analytical framework is the first

in the WPT literature and it is appropriate for a thorough RC

filter analysis and design for WPT systems.

II. RECTENNA MODEL

Consider a basic point-to-point WPT system, where the

source aims to wirelessly transfer energy to a destination.

The destination harvests energy from the source’s RF sig-

nal through the employment of a rectenna; we consider the

rectenna model illustrated in Fig. 1. The source transmits a

sinewave signal

x(t) = A cos(2πfct), 0 ≤ t ≤ T, (1)

where fc denotes the carrier frequency, A is the signal’s am-

plitude and T is the duration of the waveform. The transmitted

signal passes through a flat fading channel with channel gain h
and phase shift θ. Thus, the received signal at the destination

can be expressed as

y(t) = |h|A cos(ωct+ θ), (2)

where ωc = 2πfc is the angular frequency; in this work, we

will consider h = 1 and θ = 0, without loss of generality1.

1By keeping h and θ fixed, allows for the derivation of simple closed-form
expressions. The general case is straightforward but requires the use of their
distribution functions.
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The received signal is forwarded to a complex-conjugate

matching network, which attempts to match the rectifier input

impedance Zm to the antenna impedance Rant, in order to

increase the power transfer; in what follows, we assume

perfect matching, i.e. Rant = Zm. In other words, we consider

a theoretical bound, where the maximum possible power

transfer is achieved [3], [7]. Then, by using the average power

conservation law, the average received power is equal to the

rectifier’s input, written as

1

T

∫ T

0

|y(t)|2dt = ℜ
{

1

T

∫ T

0

|vm(t)|2
Rant

dt

}

= ℜ
{

1

T

∫ T

0

|vin(t)|2
Z∗

in

dt

}

, (3)

where vm(t) and vin(t) are the voltage signals before and

after the matching network, respectively, Zin is the input

impedance after the matching network, ℜ{·} denotes the real

part operator, and Z∗ is the conjugate of the complex number

Z . As such, it follows that

y(t) =
vm(t)√
Rant

= vin(t)
√

ℜ{1/Z∗

in}, (4)

where we have

vm(t) =
vs(t)

2
, (5)

due to perfect matching [7]. Then, the input at the rectifier is

vin(t) = y(t)
√

ℜ{Z∗

in}. (6)

For an idea diode and a parallel RC low-pass filter (LPF), we

have [3], [8]

Zin =
RL

1 + ωcτ
, (7)

where  =
√
−1 is the imaginary unit, and so

ℜ{Z∗

in} =
RL

1 + ω2
cτ

2
, (8)

where τ = RLCL is the RC time constant and RL and CL are

the filter’s load resistance and capacitor, respectively. Hence,

the input voltage at the rectifier becomes equal to

vin(t) = δA cos(ωct), (9)

with

δ ,

√

RL

1 + ω2
cτ

2
. (10)

It is worth noting that the matching network acts as a

passive voltage amplifier for the received signal by utilizing a

resonator with a high quality factor [7], [9]; as such, δ refers

to the amplification factor.

Finally, the diode-based circuit is modeled by two non-

linear functions g(x) = |x| (full-wave rectifier) and g(x) =
max(0, x) (half-wave rectifier) [3], [8]. The full-wave rectifier

enables rectification during the entire waveform duration,

whereas half is achieved with the half-wave rectifier. Despite

their simplicity, these functions serve as a useful guideline for

the RC filter design. Nevertheless, our analytical approach can

be adapted to other more complex functions as well.
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Fig. 2. Frequency response of the harvested energy by exciting a single-tone.

III. RC FILTER DESIGN

In this section, we provide the main results of our work. A

validation of the RC filter’s impact on the WPT performance

is firstly presented through circuit simulations. Then, the

analytical framework based on Fourier analysis is described.

A. Circuit Simulations

In order to verify the effects of the RC circuit, we provide

simulation results of a diode bridge rectifier circuit by using

LTspice [10]. The simulated circuit implements the well-

known full-wave bridge rectifier2. The bridge is composed

out of four SMS-7630 Schottky diodes; these diodes are ideal

as they operate at low input powers [5], [7]. To evaluate

the effect of the RF bandwidth, the serial resistance is set

to Rant = 50 Ω and the load resistance to RL = 2 kΩ.

Moreover, we consider fc = 915 MHz and A = 1 V. For

the sake of consistency, we assume that the circuit is perfectly

matched, and therefore, the matching circuit is omitted. Fig. 2

plots the frequency response of the harvested energy measured

at the RC filter when a single-tone is fed to the circuit for

different values for the capacitance. We can see that choosing

a proper capacitance CL for a given load resistor, the several

intermodulation terms may be effectively filter out, and hence,

the ripples are also decreased. This provides the impetus for

the analytical framework given in the next subsection.

B. Fourier Series Analysis

The output of the rectifier is a periodic, real function and

therefore its Fourier series representation can be written as

follows [11]

vout(t) = g(vin(t))

= δA

(

a0
2

+

∞
∑

k=1

[ak cos(ωckt) + bk sin(ωckt)]

)

= δA

(

a0
2

+

∞
∑

k=1

dk cos(ωckt+ φk)

)

, (11)

where ak and bk are the Fourier coefficients of vout(t), dk =
√

a2k + b2k, and φk = tan−1(−bk/ak). The coefficients for the

considered diode models are evaluated below.

2The choice of rectifier is made mainly as an example for illustrating the
RC filter’s impact but other more efficient circuits could also be considered.
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Proposition 1. The Fourier coefficients ak for the full-wave

rectifier are

a1 = 0, ak =
4

π(1 − k2)
cos

(

πk

2

)

, k 6= 1, (12)

and for the half-wave rectifier are

a1 =
1

2
, ak =

2

π(1− k2)
cos

(

πk

2

)

, k 6= 1. (13)

In both cases, bk = 0, ∀ k.

Proof. See Appendix.

From the above proposition, it follows that dk = |ak| and

φk = 0 if ak > 0 and φk = π, otherwise. It is important to

mention that ak < 0 when k = 4n, n ∈ Z
+.

The low-pass RC filter limits the RF bandwidth of the circuit

by removing the harmonics of vout(t) and controls the ripples

of the signal at the time domain. The parallel RC filter can be

modeled by the transfer function

H(f) =
RL

1 + 2πfRLCL

. (14)

The filter’s effect is illustrated in Fig. 3, where fcut = 1/(2πτ)
is the filter’s cut-off frequency, that is, the harmonics with

frequencies larger than fcut get (ideally) greatly attenuated.

By taking into account the Fourier series representation of the

filter’s input in (11), the output of the RC filter is written as

vo(t) = δA

(

a0RL

2
+

∞
∑

k=1

|H(kfc)|dk

× cos(ωckt+ φk + ∠H(kfc))

)

, (15)

where |H(kfc)| = RL/
√

1 + (2πkfcτ)2 and ∠H(kfc) =
tan−1(−2πkfcτ) is the magnitude and the argument of

H(kfc), respectively. The peak of the time-domain ripple3 ρ
at the filter’s output can be obtained by

ρ = δARL

(

a0
2

+

∞
∑

k=1

dk cos(φk)
√

1 + (2πkfcτ)2

)

, (16)

which occurs at time instants t = tan−1(−2πkfcτ)/(ωcτ),
which gives cos(φk) = 1 if ak > 0 and cos(φk) = −1,

otherwise.

Finally, the DC voltage is the average vo(t) over the

waveform duration, that is,

VDC = Et{vo(t)} = δARL

a0
2
, (17)

where a0 is the Fourier coefficient that contributes to the DC

component, which is a0 = 4/π (full-wave) and a0 = 2/π
(half-wave). Thus, as expected, the DC voltage achieved by the

full-wave is double of that achieved by the half-wave rectifier.

Remark 1. When the RC time constant is very large, i.e. τ →
∞, we have δ → 0. It follows that

lim
τ→∞

VDC = 0. (18)

3The ripple refers to the variation in DC voltage at the output of the rectifier.
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Fig. 3. Low-pass RC filter with cut-off frequency fcut = 1/(2πτ).

On the other hand, a small RC time constant, i.e. τ → 0,

results in δ →
√
RL. Therefore,

lim
τ→0

VDC = ARL

√

RL

a0
2
. (19)

This remark highlights the importance of the RC filter’s

impact on energy harvesting, even though most works in the

literature assume that τ → ∞. Note that, in practice, the output

DC voltage when τ → ∞ is non-zero but negligible. Also,

observe that for the case τ → 0, we obtain the maximum DC

voltage but also the maximum time-domain ripple, given by

ρmax = ARL

√

RL

(

a0
2

+

∞
∑

k=1

dk cos(φk)

)

, (20)

as all the harmonics are present at the output of the RC filter.

In fact, when τ → 0, we have vo(t) = RLvout(t) since this

leads to H(f) → RL.

C. Discussion on Multisine Signals

Multisine signals have particular interest for WPT as they

boost the RF harvesting due to their high PAPR [4]. Thus,

we now discuss how the proposed analytical framework can

be extended to this case. Specifically, the source transmits

an unmodulated N -tone multisine signal with zero phase

arrangement and intercarrier frequency spacing ∆f [2], [6].

In this case, the transmitted signal can be written as

x(t) = U(t) cos(2πfct), (21)

where U(t) = A sin(Nπ∆ft)/ sin(π∆ft) and fc ≫ ∆f . The

envelope U(t) = U(t + T ) is a periodic function with T =
2k/∆f and fundamental frequency f0 = ∆f/2. Observe that

for ∆f → 0, we have U(t) ≈ AN , which follows from the

small-angle approximation. In other words, the Fourier series

representation as well as the DC voltage is equal to the single

sinewave case but scaled linearly by the number of tones N .

The derivation of the Fourier coefficients for the multisine

case is out of the scope of this letter. However, we provide a0
for N = 2, since it characterizes the DC voltage at the output

of the filter. Specifically, for the full-wave rectifier we get

a0 =
8fc

(

2fc −∆f sin
(

π
4

∆f

fc

))

π(4f2
c −∆f2)

cos

(

π

4

∆f

fc

)

, (22)
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Fig. 4. Output voltage versus t; top: fcut = 1 GHz, bottom: fcut = 5 GHz.

whereas for the half-wave rectifier we have

a0 =
8f2

c

π(4f2
c −∆f2)

cos

(

π

4

∆f

fc

)

. (23)

The above can be derived using the methodology in the

appendix. Observe that, in this case, the full-wave coeffi-

cient is greater than the half-wave one by a factor 2 −
∆f sin

(

π
4

∆f

fc

)

/fc. Moreover, for fc → ∞, we end up with

the coefficients of Proposition 1.

IV. NUMERICAL RESULTS & CONCLUSIONS

We now validate our analytical approach for a single

sinewave signal with computer simulations. The considered

parameters are A = 1 V, RL = 2 Ω and fc = 915 MHz.

Fig. 4 illustrates the output voltage in terms of the time

instant t for the full-wave rectifier with fcut = 1 GHz (top sub-

figure) and fcut = 5 GHz (bottom sub-figure). Evidently, the

proposed analytical framework captures the expected behavior

of the rectifying circuit. Specifically, with a higher fcut (i.e., a

lower τ ), the system achieves a higher DC voltage but there is

also a larger ripple. It is also important to point out, that Fig.

4 validates the analytical expression for the maximum ripple

value. This is a critical aspect, as the maximum tolerance for

the ripple is application-specific and is defined based on the

desired objectives.

Fig. 5 depicts the DC voltage with respect to fcut for the

considered rectifier models. It is clear that for both rectifiers,

VDC converges to its maximum value as fcut increases. A

faster convergence is attained for smaller values of the carrier

frequency fc. As expected, the full-wave rectifier achieves

twice the DC values of the half-wave rectifier.

Future extensions of this work include the consideration

of circuit imperfections (e.g. impedance mismatch), more

realistic diode models as well as an investigation on the impact

of fading and the phase shift on the energy harvesting.
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APPENDIX

For the real signal y(t) = cos(2πfct), the Fourier coeffi-

cients (trigonometric Fourier series) are given by [11]

ak = 2fc

∫ 1

2fc

−
1

2fc

g(y(t)) cos(2πkfct)dt, (24)

and

bk = 2fc

∫ 1

2fc

−
1

2fc

g(y(t)) sin(2πkfct)dt, (25)

where recall that g(x) = |x| (full-wave) or g(x) = max(0, x)
(half-wave). We first evaluate the full-wave coefficients. In this

case, we have

ak =
1

π

(

2

∫ π
2

0

cos(z) cos(kz)dz − 2

∫ π

π
2

cos(z) cos(kz)dz

)

(26)

=
2

π

∫ π
2

−
π
2

cos(z) cos(kz)dz, (27)

which follows from the transformation z → 2πfct and the fact

that cos(z) > 0 for z ∈ (−π
2
, π
2
) and cos(z) < 0, otherwise.

The final expression of ak, k 6= 1, can be deduced through the

use of well-known trigonometric identities [11], whereas for

k = 1, (26) is equal to zero. In a similar way, we can evaluate

the coefficient bk by

bk =
2

π

∫ π
2

−
π
2

cos(z) sin(kz)dz, (28)

which it is easy to see that it reduces to bk = 0 for all k.

The half-wave coefficients can be derived by using the

methodology above. The main difference is the fact that, in

this case, we have

ak =
1

π

∫ π

−π

max(0, cos(z)) cos(kz)dz

=
1

π

∫ π
2

−
π
2

cos(z) cos(kz)dz, (29)

which gives (13) and completes the proof.
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