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Abstract—This letter deals with the problem of clutter edge
detection and localization in training data. To this end, the
problem is formulated as a binary hypothesis test assuming
that the ranks of the clutter covariance matrix are known, and
adaptive architectures are designed based on the generalized
likelihood ratio test to decide whether the training data within a
sliding window contains a homogeneous set or two heterogeneous
subsets. In the design stage, we utilize four different covariance
matrix structures (i.e., Hermitian, persymmetric, symmetric, and
centrosymmetric) to exploit the a priori information. Then, for
the case of unknown ranks, the architectures are extended by
devising a preliminary estimation stage resorting to the model
order selection rules. Numerical examples based on both synthetic
and real data highlight that the proposed solutions possess
superior detection and localization performance with respect to
the competitors that do not use any a priori information.

Index Terms—Adaptive radar detection, classification, clutter
edge, covariance structure, generalized likelihood ratio test.

I. INTRODUCTION

O
VER the last decades, adaptive radar detection of tar-

gets in Gaussian interference with unknown covariance

matrix is an active field of research and many solutions have

been proposed such as [1]-[19]. Most of the aforementioned

solutions are based on the so-called Homogeneous Environ-

ment (HE) where a set of training samples, used for estimation

purposes and collected in the proximity of the Cell Under Test

(CUT), is assumed to share the same spectral properties of the

interference in the CUT. However, in practical applications,

clutter background can be characterized by unknown clutter

edges, namely the interference power between adjacent range

cells varies and, hence, the statistical properties of the training

samples do not meet the HE assumption seriously impacting

on the performance of the traditional detection methods.

To solve the above problem, several contributions can be

found in the related literature such as [20]-[23]. In the most

recent work [23], Xu et al. proposed a Known Rank-Clutter

Edge Detector (KR-CED) to perform the adaptive detection
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and localization of the clutter edge also addressing the case

of unknown rank of the Clutter Covariance Matrix (CCM).

Therein, the so-called Covariance Change Detector (CCD) has

been considered as a competitor; such a decision scheme is a

straightforward extension of the Generalized Likelihood Ratio

Test (GLRT) for equality of covariance matrices [24] to the

complex domain and assuming that the location of the change

point is unknown.

This letter enriches the framework of [23] with unexplored

(at least to the best of authors’ knowledge) cases. Unlike [23],

a more general scenario is considered where the ranks of

the CCM in the regions on both sides of clutter edge can

be different. In addition, different CCM structures are taken

into account. Such structures arise from system geometries

and/or clutter properties [25]-[27]. In fact, a system using

a symmetrically spaced linear array leads to a CCM that

is Hermitian about its principal diagonal and persymmetric

about its cross diagonal [28]. Another example is related

to ground clutter observed by a stationary monostatic radar

that gives rise to a symmetric power spectral density and,

hence, a real-valued as well as even autocorrelation function

(symmetric CCM) [29]. When both the above situations occur,

then the CCM exhibits a centrosymmetric structure [27]. Thus,

four CCM structures are considered: the generic unstructured

(Hermitian) case; the persymmetric (or centrohermitian) case;

the (real) symmetric case; and the (real) centrosymmetric case.

The problem is formulated as a binary hypothesis test where

the alternative hypothesis assumes the presence of a clutter

edge. The design first assumes that the ranks of the CCMs are

known. Then, the proposed architectures are coupled with a

preliminary stage for rank estimation based upon Model Order

Selection (MOS) rules [30]. Finally, the performance analysis

is conducted on both synthetic and recorded live data.

The remainder of this letter is organized as follows. Section

II deals with the problem formulation while Section III focuses

on the designs. Section IV provides numerical examples and

comparisons. Concluding remarks are given in Section V.1

1Notation: vectors (matrices) are denoted by boldface lower- (upper-) case
letters; det(·), Tr(·), Rank(·), (·)∗ , (·)T , and (·)† denote the determinant,
the trace, the rank, complex conjugate, transpose, and complex conjugate
transpose, respectively. R (C) is the set of real (complex) numbers, RN×M

(CN×M ) is the Euclidean space of (N × M)-dimensional real (complex)
matrices (or vectors if M = 1). Re{·} and Im{·} indicate the real and
imaginary parts of a complex number, respectively. I and 0 stand for the
identity matrix and the null matrix, respectively, of suitable sizes. J ∈ RN×N

denotes a permutation matrix such that J(l, k) = 1 only if l + k = N + 1.
x ∼ CNN (µ,R) means that x is a complex circular N -dimensional normal
vector with mean µ and covariance matrix R. For any Hermitian matrix A,
A � 0 means that A is a positive semi-definite matrix.

http://arxiv.org/abs/2202.01595v1
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II. PROBLEM FORMULATION

The problem at hand consists in deciding for the presence

of clutter edges in the area surrounding the CUT. To this

end, we consider a radar system, equipped with N ≥ 2
space, time, or space-time channels which illuminates the CUT

and the surrounding area consisting of K range bins. Let us

assume that the set can contain clutter edges and consider two

sliding windows of the same size L < K/2, which2 moves

towards the two opposite directions (forward and backward)

from the CUT as illustrated in Fig. 1. Moving over the entire

set of range bins, the radar system decides whether or not a

clutter edge is present for both the sliding directions. The two

clutter edge search operations can be conducted independently

each from the other. Therefore, denoting by zl ∈ CN×1, l =
1, 2, · · · , L, statistically independent data vectors belonging to

one of the two sliding windows, the decision problem can be

formulated as the following hypothesis testing problem





H0 : zl ∼ CNN (0, σ2
nI+M0), l = 1, · · · , L,

H1 :

{
zl ∼ CNN(0, σ2

nI+M1), l = 1, · · · , L1,

zl ∼ CNN(0, σ2
nI+M2), l = L1 + 1, · · · , L,

(1)

where σ2
n > 0 is the thermal noise power, M0 ∈ CN×N is

the whole CCM under H0 with Rank(M0) = r0 < N , M1 ∈
CN×N is the first region CCM component with Rank(M1) =
r1 < N , M2 ∈ CN×N is the second region CCM component

with Rank(M2) = r2 < N and such that M2 −M1 � 0, or

M1 −M2 � 0, L ≥ r1 + r2 and L1 ∈ {l1min, . . . , l1max} with

l1min = max{r1, r2}+ 1, l1max = L−max{r1, r2} − 1.

Then the probability density function of Z = [z1, . . . , zL] ∈
C

N×L under H0 has the following expression

f(Z;σ2
n,M0, H0) =

exp
{
−Tr[(σ2

nI+M0)
−1

S0]
}

[πN det(σ2
nI+M0)]

L
, (2)

where S0 = ZZ
†, while that under H1 is given by

f(Z;σ2
n,M1,M2, L1, H1) =

exp
{
−Tr[(σ2

nI+M1)
−1

S1]
}

[πN det(σ2
nI+M1)]

L1

×
exp

{
−Tr[(σ2

nI+M2)
−1

S2]
}

[πN det(σ2
nI+M2)]

L2

, (3)

where L2 = L−L1, S1=
∑L1

l=1 zlz
†
l , and S2=

∑L

l=L1+1 zlz
†
l .

As aforementioned, we assume that Mi, i = 0, 1, 2, can be

either Hermitian, persymmetric such that M
−1
i = [M−1

i +
J(M∗

i )
−1

J]/2, real symmetric implying that Re{zl} and

Im{zl} are Independent Identically Distributed (IID), or cen-

trosymmetric such that M−1
i = [M−1

i +JM
−1
i J]/2 ∈ RN×N

2The choice of L depends on several factors that range from computational
requirements to estimation quality. In fact, high values for L increase the
computational load but, at the same time, can allow for high-quality estimation
and vice versa. However, the drawback related to large values of L might be
the presence of multiple clutter regions and, hence, multiple change points
within the same sliding window.

implying that Re{zl} and Im{zl} are IID. Considering Si, i =
0, 1, 2, defined above, we can write the following equalities:

Tr
[(
σ2
nI+Mi

)−1
Si

]
(4)

=





Tr
[(
σ2
nI+Mi

)−1
(Si + JS

∗
iJ) /2

]
,

if Mi is persymmetric;

Tr
[(
σ2
nI+Mi

)−1
Re{Si}

]
, if Mi is real symmetric;

Tr
[(
σ2
nI+Mi

)−1
(Re{Si}+ JRe{S∗

i }J) /2
]
,

if Mi is centrosymmetric.

Fig. 1. Two sliding windows of the same size L: the first moves forward and
the second one moves backward from the CUT.

III. DETECTION ARCHITECTURE DESIGNS

In this section, assuming that a specific position of the

sliding window is given, we design detection architectures

that can declare the presence of a clutter edge and provide an

estimate of its position within the considered window. We start

the design under the assumption of known r = [r0, r1, r2]
T

,

then we deal with the case of unknown r.

A. Design for known r

In order to solve problem (1) assuming that r is known, we

utilize the GLRT, whose expression is

Λr(Z) =

max
L1

max
σ2
n

max
M1

max
M2

f(Z;σ2
n,M1,M2, L1, H1)

max
σ2
n

max
M0

f(Z;σ2
n,M0, H0)

H1

≷
H0

η,

(5)

where η is the detection threshold.3

Under H0, the log-likelihood of Z can be expressed as

log f(Z;σ2
n,M0, H0) = C − L log(det(σ2

nI+M0))

− Tr
[(
σ2
nI+M0

)−1
Sh0

]
, (6)

where C = −LN log π and

Sh0=





S0, for M0 hermitian;

(S0 + JS
∗
0J) /2, for M0 persymmetric;

Re{S0}, for M0 real symmetric;

(Re{S0}+ JRe{S∗
0}J) /2, for M0 centrosymmetric.

The maximization of log f(Z;σ2
n,M0, H0) with respect to

σ2
n and M0 can be accomplished following the lead of [23]

and [31] to come up with

l̂0(r0)= C−LN−L
{∑r0

i=1
log

γi
L
+(N−r0) log σ̂

2
n,0

}
, (7)

3Hereafter, we denote by η the generic detection threshold set according
to the desired Probability of False Edge Detection (PFED).
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where γ1 ≥ γ2 ≥ . . . ≥ γN ≥ 0 are the eigenvalues of Sh0,

and σ̂2
n,0 = 1

L(N−r0)

∑N

i=r0+1 γi.

Under H1, the log-likelihood of Z can be expressed as

log f(Z;σ2
n,M1,M2, L1, H1) = C − L1log(det(σ

2
nI+M1))

−L2 log(det(σ
2
nI+M2))− Tr

[(
σ2
nI+M1

)−1
Sh1

]

−Tr
[(
σ2
nI+M2

)−1
Sh2

]
, (8)

where Shi, i = 1, 2 is defined as

Shi=





Si, for Mi hermitian;

(Si + JS
∗
iJ) /2, for Mi persymmetric;

Re{Si}, for Mi real symmetric;

(Re{Si}+ JRe{S∗
i }J) /2, for Mi centrosymmetric.

As done under H0, maximizing log f(Z;σ2
n,M1,M2, L1, H1)

with respect to σ2
n, M1 and M2 leads to

l̂1(r1, r2, L1) = C − LN − [L1(N − r1) + L2(N − r2)]

× log σ̂2
n,1 − L1

∑r1

i=1
log

γ1i
L1

− L2

∑r2

i=1
log

γ2i
L2

, (9)

where γ11 ≥ γ12 ≥ . . . ≥ γ1N ≥ 0 are the eigenvalues of Sh1,

γ21 ≥ γ22 ≥ . . . ≥ γ2N ≥ 0 are the eigenvalues of Sh2 and

σ̂2
n,1 = 1

L1(N−r1)+L2(N−r2)

(∑N

i=r1+1 γ1i +
∑N

i=r2+1 γ2i

)
.

Finally, gathering all the above derivations, we can write

the logarithm of the GLRT for known r as

log Λr(Z)
H1

≷
H0

η, (10)

where log Λr(Z) = max
L1∈{l1min,...,l1max}

{
l̂1(r1, r2, L1)− l̂0(r0)

}

if γ1i/L1 > σ̂2
n,1, ∀i = 1, . . . , r1 and γ2i/L2 > σ̂2

n,1,

∀i = 1, . . . , r2, otherwise we set log Λr(Z) = 0.

In what follows, we refer to (10) as Hermitian-Clutter

Edge Detector (H-CED) when the CCMs are assumed gen-

eral Hermitian, Persymmetric-Clutter Edge Detector (P-CED)

when the CCMs have a persymmetric structure, Symmetric-

Clutter Edge Detector (S-CED) when the clutter spectrum is

symmetric with respect to the origin, and Centrosymmetric-

Clutter Edge Detector (C-CED) when both spectrum symmetry

and a persymmetric covariance structure hold.

In Fig. 1, when H1 is declared for the ith position of the

sliding window, an estimate of the clutter edge position, L̂1i

say, within the sliding window is provided. As the sliding

window moves, we will get several estimates. By using the

fusion strategy in [23], the estimation quality can be improved.

B. Implementation issues: unknown r

In this subsection, we provide a procedure to estimate

the rank of Mi, i = 0, 1, 2 assuming the general Hermitian

structure since it comprises the other considered structures.

To this end, we resort to the MOS rules such as the Akaike

Information Criterion (AIC), the Bayesian Information Crite-

rion (BIC), and the Generalized Information Criterion (GIC),

to come up with a suitable estimate for r.

Precisely, under H0, it is possible to estimate r0 as r̂0 =

argmin
r0

[
−2l̂0(r0) + q · p(r0)

]
, where p(r0) = r0(2N−r0)+

1 is the number of unknown parameters [32], and

q =





2 AIC penalty term,

log(L) BIC-like penalty term,

(1 + a), a > 1 GIC penalty term.

(11)

Under H1, for each allowable value of L1, an estimate

of r
− = [r1, r2]

T is obtained by computing r̂
−
L1

=

argmin
r−

[
−2l̂1(r1, r2, L1) + q · ζ(r−)

]
, where ζ(r−) = 1 +

∑2
i=1 ri(2N − ri). Now, plugging the above estimates along

with r̂0 into log Λr(Z), where the last maximization is with

respect to L1, the final estimates of L1 and r
− can be

determined.

IV. NUMERICAL EXAMPLES

In this section, we present some numerical examples on

simulated and real data. The considered performance metrics

are the Probability of Edge Detection (PED) and Root Mean

Square (RMS) estimation error of the clutter edge position.

The ranks are assumed known due to the excellent perfor-

mance (not shown here for brevity) of the estimation procedure

for the CPR values of interest. A natural competitor of the

proposed architectures is the CCD, whose expression is

max
L1∈{lmin,...,lmax}

[det(S0/L)]
L

[det(S1/L1)]
L1 [det(S2/L2)]

L2

H1

≷
H0

η, (12)

where lmin > N and L − lmax > N . For i = 0, 1, 2, if

we consider the four cases of Mi and replace Si with Shi,

we will get Hermitian-CCD (H-CCD), Persymmetric-CCD (P-

CCD), Symmetric-CCD (S-CCD) and Centrosymmetric-CCD

(C-CCD). Moreover, the H-CED is also a competitor since it

degenerates to the KR-CED derived in [23] when r0=r1=r2.

A. Synthetic data

In this part, we use standard Monte Carlo counting

techniques by evaluating the detection thresholds and PED

(along with the RMS estimation errors) over 100/PFED and

104 independent trials, respectively. The CCM is gener-

ated as Mi = σ2
c,i

∑
θk∈Θi

v(θk)v(θk)
†, i = 0, 1, 2, where

σ2
c,0 = σ2

c,1 is set based on the Clutter-to-Noise Ra-

tio (CNR) defined as CNR = 10 log10
(
σ2
c,0/σ

2
n

)
with

σ2
n = 1, σ2

c,2 is set based on the Clutter Power Ra-

tio (CPR) defined as CPR = 10 log10
(
σ2
c,2/σ

2
c,1

)
, Θ0 =

Θ1 = Θ2 = {−20◦,−10◦, 10◦, 20◦} (implying that r0 =
r1 = r2 = 4 and Mi is centrosymmetric), and v(θk) =[
exp{−jπN−1

2 sin θk}, . . . , 1, . . . , exp{jπN−1
2 sin θk}

]T
∈

CN×1 is the spatial steering vector. Moreover, we set PFED =
10−4, N = 9 and, for a fair comparison, the maximization

over L1 is carried out over the grid Ω={N+1, . . . , L−N−1}.

The clutter edge detection performance are shown in Fig.

2, where C-CED has the best performance, followed by P-

CED (along with S-CED) and H-CED, but all of them perform

better than their corresponding competitors. Besides, the gains

of the proposed architectures with respect to the competitors
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(b) L1 = 13
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(c) L1 = 15
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(d) L1 = 17

Fig. 2. PED versus CPR for the proposed architectures and their competitors
assuming N = 9, L = 27, CNR = 25 dB, and four values for L1.

depend on the value of L1 and attain their maximum when

L1 < L/2. The algorithms are also capable to detect a change

of the covariance structure. When the structures of M1 and

M2 are different, PED is 1 for all the CPR of interest (results

are not reported here for brevity).
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(b) L = 36

Fig. 3. RMS estimation error versus CPR for the proposed architectures and
their competitors assuming N = 9, CNR = 25 dB, and two values for L.

In Fig. 3, we study the edge localization performance, where

L1 is generated as a discrete uniform random variable taking

on values in Ω. The plots show that for CPR < 10 dB, the

errors of the proposed architectures are lower than that of their

corresponding competitors. In addition, for low CPR, the error

are larger for the sliding window with greater size.

Finally, notice that a performance degradation can occur

when the actual CCM structure is a general case of that

assumed at the design stage. In fact, in this case, it is

not ensured that the actual CCM experiences the nominal

structure.

B. Real data

In this part, illustrative examples are based on the MIT-

LL Phase-One radar dataset [33],[34]. Each acquisition is

composed of 30720 temporal returns from 76 range bins.

The covariance matrix of this dataset appears to have a

centrosymmetric structure as noticed in [35, and references

therein].

The average power variation over the range (see Fig. 8 of

[23]) indicates that there exist two almost uniform regions,

occupying bins 1-10 and 22-37, separated by a transition

region located around the range bin 12. In the following, we set

PFED = 10−3, N = 6, and use r̂ = [2, 2, 2]T which has been

already estimated in [23] accounting also for numerical issues

associated to the initial range bins and related to the system

sensitivity time control. The detection threshold is computed

based on the range bins 1-8 over 2560 data blocks.
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Fig. 4. PED versus the initial range bin index of the sliding window for the
proposed architectures and their competitors assuming N = 6 and L = 16.

Fig. 4 shows the detection performance based on 5120

data blocks, where the x-axis reports the initial bin index of

the moving window. The plots show that the curves of the

proposed architectures are above those of the competitors. All

curves decrease when the window moves towards the transition

region, which is less evident for data from the VV channel.
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(b) VV polarization

Fig. 5. Percentage of estimation of L1 for the considered architectures
assuming N = 6 and a window of size L = 16 starting from bin 4.

In Fig. 5, we plot the percentage of estimation of L1

based on the range bins 4-19. The histograms point out that

the proposed architectures return L̂1 = 12 with a greater

percentage than their corresponding competitors.

V. CONCLUSION

In this letter, we have considered the problem of clutter

edge detection and localization in training data. At the design

stage, based on the GLRT, four architectures have been de-

vised exploiting four possible CCM structures. The a priori

knowledge of the CCM structure allowed us to extract more

useful information from training data. Illustrative examples

have shown the superiority of the proposed approaches over

the competitors which ignore the CCM structure information.

Future works might include the design of architectures that can

classify the CCM structure or account for clutter discretes.
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