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Abstract—Despite the rapid progress of end-to-end (E2E)
automatic speech recognition (ASR), it has been shown that
incorporating external language models (LMs) into the decoding
can further improve the recognition performance of E2E ASR
systems. To align with the modeling units adopted in E2E
ASR systems, subword-level (e.g., characters, BPE) LMs are
usually used to cooperate with current E2E ASR systems.
However, the use of subword-level LMs will ignore the word-level
information, which may limit the strength of the external LMs
in E2E ASR. Although several methods have been proposed to
incorporate word-level external LMs in E2E ASR, these methods
are mainly designed for languages with clear word boundaries
such as English and cannot be directly applied to languages like
Mandarin, in which each character sequence can have multiple
corresponding word sequences. To this end, we propose a novel
decoding algorithm where a word-level lattice is constructed on-
the-fly to consider all possible word sequences for each partial
hypothesis. Then, the LM score of the hypothesis is obtained
by intersecting the generated lattice with an external word N-
gram LM. The proposed method is examined on both Attention-
based Encoder-Decoder (AED) and Neural Transducer (NT)
frameworks. Experiments suggest that our method consistently
outperforms subword-level LMs, including N-gram LM and
neural network LM. We achieve state-of-the-art results on both
Aishell-1 (CER 4.18%) and Aishell-2 (CER 5.06%) datasets
and reduce CER by 14.8% relatively on a 21K-hour Mandarin
dataset.

Index Terms—speech recognition, language model

I. INTRODUCTION

END-TO-END automatic speech recognition (ASR) has
made great progress in the past few years. Although E2E

ASR frameworks such as attention-based encoder-decoder
(AED) [1], [2] and neural transducer (NT) [3] can directly map
speech to token sequences through a single neural network, it
has been found that incorporating an external language model
into an E2E ASR system sometimes is crucial to utilize a large
amount of text corpus. To this end, several approaches have
been proposed to effectively integrate external LMs in E2E
ASR systems [4], [5], [6], [7]. One of the most widely used
approaches is called shallow fusion [5].

In shallow fusion, the log probabilities of each candidate
hypothesis obtained from the E2E model and the external
LM are interpolated during the decoding. To allow effective
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on-the-fly interpolation, the external LMs used in shallow
fusion are usually constructed using the same subword level
modeling units (e.g., characters, BPE [8]) with E2E ASR
systems, especially for languages without clear word boundary
such as Mandarin and Japanese. However, the use of subword
level LMs will drop the word level information, which will
compromise the strength of external LMs. To overcome this
issue, several approaches have been proposed to incorporate
word-level external LMs during inference under the paradigm
of shallow fusion [9], [10] and achieved significant perfor-
mance improvement. In [9], each hypothesis is firstly scored by
the character-level LM until a word boundary is encountered.
Then the known words are further rescored using the word-
level LM while the character-level LM provides the scores for
out-of-vocabulary tokens. In [10], a look-ahead mechanism
is proposed to get rid of character-level LMs and score
the hypothesis using a word-level RNN-LM only. However,
most of the previous methods require clear word boundaries
to compute the word-level LM scores, which limits their
application for those languages with blurred word boundaries,
such as Mandarin and Japanese. Therefore, we argue that the
way to effectively incorporate word-level LMs into an E2E
ASR system for languages without clear word boundaries
needs further investigation.

To utilize the word-level LM during decoding, a subword-
to-word conversion is a prerequisite. However, a character-
level sequence can be mapped to different word sequences.
Therefore, the main issue that needs to be addressed in
incorporating word-level LM in E2E ASR for languages like
Mandarin is: how to consider all candidate word sequences
of a partial character hypothesis. In this work, we propose
a new method to integrate word N-gram LMs into the de-
coding of E2E ASR systems without the requirement of clear
word boundaries. During decoding, each character-level partial
hypothesis generated by the ASR system is firstly converted
into a word lattice. Each path of the lattice stands for one
possible subword-to-word conversion result. Then the score
of each path is obtained by intersecting the word lattice with
an external weighted finite-state acceptor (WFSA) word-level
N-gram LM. Finally, the best score among all the paths (or
the averaged score of all the paths) in the lattice is used as
the score computed with word-level LM for the given partial
hypothesis. In this way, the proposed method is free from
word boundary and considers all possible subword-to-word
conversion results.

We examine the proposed method on two of the most
popular E2E ASR frameworks: AED and NT. Exhaustive
experiments show that our method consistently outperforms
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its subword-level counterparts, including both the N-gram
LM and neural network LM. Superior robustness to hyper-
parameters is also observed in our method. Experimentally, we
achieve the character error rate (CER) of 4.18% and 5.06%
on Aishell-1 [11] test set and Aishell-2 [12] test-ios set. Our
method is also compatible with large-scale ASR tasks: up to
2% absolute, or 14.8% relative, CER reduction is observed on
a 21k-hour Mandarin corpus.

The main contributions of this work are concluded below:
1) we propose a novel method to incorporate external word-
level N-gram language models into E2E ASR systems for
languages without clear word boundaries; 2) To the best of
our knowledge, the proposed method achieves state-of-the-art
results on two of the widely used Mandarin datasets: Aishell-1
and Aishell-2.

II. ON-THE-FLY DECODING WITH WORD N-GRAM

A. Shallow fusion in AED and NT

Shallow fusion [5] is a common method for LM adaptation
of E2E ASR systems. In this work, we still follow the
paradigm of shallow fusion to integrate the word-level N-gram
LM. Without loss of generality, we assume a character-level
partial hypothesis Cm

1 is proposed by the E2E ASR system,
where Cm−1

1 is the history context and cm is the newly
proposed character. In shallow fusion, the LM log-posterior
log p(cm|Cm−1

1 ) is required during decoding for various E2E
ASR systems. Specifically, for the decoding algorithm[2] of
AED, assume δ(Cm

1 ) is the score of partial hypothesis Cm
1 .

In shallow fusion, the score is computed recursively:

δ(Cm
1 ) = δ(Cm−1

1 ) + [sAEDcm + βAED · log p(cm|Cm−1
1 )] (1)

Likewise, for the decoding algorithm ALSD[13] of NT system,
assume δt(C

m
1 ) is the score of partial hypothesis Cm

1 with
time stamp t and the LM log-posterior is adopted only when
a non-blank character is generated:

δt(C
m
1 ) = δt(C

m−1
1 ) + [sNTcm,t + βNT · log p(cm|Cm−1

1 )] (2)

sAEDcm and sNTcm,t are the scores for character cm generated by
AED and NT systems respectively while βAED and βNT are the
hyper-parameters in decoding.

B. Word-level N-gram LM integration

For character-level LMs, the log-posterior log p(cm|Cm−1
1 )

used in shallow fusion is always provided. For word-level LM,
however, this log-posterior cannot be accessed directly. In-
stead, we compute the character-level log-posterior as follow:

log p(cm|Cm−1
1 ) = logP (Cm

1 )− logP (Cm−1
1 ) (3)

As suggested in the equation, the word-level LM can be inte-
grated into shallow fusion as long as the sequential probability
P (Cm

1 ) of any character sequence Cm
1 can be computed by

a word-level LM. Below we explain how P (Cm
1 ) is obtained

by a word-level N-gram LM.
To assess character sequence by a word-level LM, a

character-to-word conversion is firstly required. For languages
with explicit word boundary (a.k.a., blank) such as English,
the word sequence converted from the corresponding char-
acter sequence is unique. However, for other languages like
Mandarin, the absence of clear word boundary means a

Fig. 1: Lattice built from character-level sequence 孙悟空
and vocabulary V = {孙, 悟，空, 悟空, 孙悟空}. All input
symbols are in word-level.

character sequence can be converted into multiple different
word sequences. E.g., the Mandarin character sequence 孙悟
空 can be mapped to word sequences [孙,悟,空], [孙,悟空] and
[孙悟空]. Note we assume word 孙悟 is not a valid Mandarin
word so the sequence [孙悟,空] is invalid and not considered.

Formally, note f as a function that converts character-level
sequence Cm

1 into a word-level sequence W
nf

1 :
W

nf

1 = f(Cm
1 ) = [w1, ..., wnf

] ∀ wi ∈ V (4)
where V is a known word vocabulary and nf is the length of
the word-level sequence that depends on f . Thus, the probabil-
ity of the character-level sequence P (Cm

1 ) is formulated as the
weighted sum probability of all possible word-level sequence
W

nf

1 :
P (Cm

1 ) =
∑
f∈F

P (f)P (f(Cm
1 )) =

∑
f∈F

P (f)P (W
nf

1 ) (5)

where
∑

f P (f) = 1 and F is the set of all valid character-
to-word conversion functions.

To fully explore all possible word sequences Wnf

1 and their
corresponding character-to-word conversion functions f in Eq.
5, a lattice-based method is proposed. The character sequence
Cm

1 is firstly transformed into a lattice Q (which is also a
WFSA). For any word sequence W

nf

1 , there is one and only
one path in the lattice whose input label sequence is exactly
W

nf

1 . Thus, the whole lattice is a representation of all possible
character-to-word conversion results. An example lattice of
character sequence 孙悟空 is shown in Fig.1.

Given the character sequence Cm
1 and word vocabulary V ,

the detailed building process of the lattice is in Algorithm 1.
For any continuous r characters Cs+r−1

s , if they can form a
word in V (a.k.a, w = Cs+r−1

s ∈ V), an arc from state s− 1
to state s + r − 1 is added to the arc set A. The weights
on all these arcs are 0. Once all valid s and r are explored,
the lattice is built from the arc set A. In addition, we ensure
that any character predicted by the ASR systems is also in the
word vocabulary V (∀ ci ∈ V) so that all the out-of-vocabulary
(OOV) words can always be considered as the sequence of
single characters and the end state (state m − 1) is always
reachable.

Before decoding, the word-level N-gram LM is trained
following [14], [15] and is transformed into a WFSA (termed
as G). In the decoding stage, once the lattice Q for character
sequence Cm

1 is built, the character-level probability in eq.5 is
computed through an FST-based method. A new WFSA QG
is generated by the word lattice Q and the word N-gram G:

QG = Q ◦ G (6)
where ◦ denotes intersect operation[16] in WFSA. Before
intersect, we add self-loops with 0 weight and epsilon input
label to explore all backoff paths in G. Subsequently, the
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Algorithm 1 Build lattice for character-level sequence Cm
1

Require: character-level sequence Cm
1 , word-level vocabu-

lary V , maximum word length l.
arc set A ← ∅
for r = 1, .., l do

for s = 1, ...,m− r do
if Cs+r−1

s ∈ V then
A ← A ∪ arc(s− 1, s+ r − 1,Cs+r−1

s , 0)
end if

end for
end for
return WFSA(A)

character-level sequence probability P (Cm
1 ) is equivalent to

the forward score of the end state in QG.

logP (Cm
1 ) = log

∑
f∈F

P (f)P (W
nf

1 ) = Forward Score(QG)

(7)
In FST literature[17], semirings are the algebraic structures

that define the rule of forward score computation. In this work,
we consider two well-known semirings: tropical-semiring and
Log-semiring. Tropical-semiring only considers the path with
the best accumulated score, which is equivalent to set:

P (f) =

{
1 if f = arg max

f ′∈F
P (f ′(Cm

1 ))

0 otherwise

}
(8)

On the other hand, Log-semiring equally accumulates the score
of every path that can be accepted by QG, which is equivalent
to set:

P (f) =
1

|F|
(9)

III. EXPERIMENTS

In this section, we firstly describe the experimental setup.
Then the experimental results and analysis on three Mandarin
datasets are presented.
A. Experimental setup

1) Datasets: We examine our method on two popular open-
source Mandarin datasets: Aishell-1 (178 hours), Aishell-2 (1k
hours). To further evaluate the effectiveness of the proposed
method on large-scale ASR tasks, we also apply our method to
a 21k-hour Mandarin dataset and report its performance under
6 test scenarios: reading, translation, guild, television, music,
education.
2) E2E ASR baselines: We verify the effectiveness of
our method on two of the most popular E2E ASR sys-
tems: Attention-based Encoder-Decoder (AED) and Neural
Transducer (NT). For AED, a Conformer[18] encoder and a
Transformer[19] decoder are adopted, which consumes 46M
parameters; for NT, a Conformer encoder, an LSTM prediction
network and an MLP joint network are used (89M parameters).
Following our previous work [20], the LF-MMI criterion[21],
[22] is adopted in the training stage of the two systems for
better performance. In the decoding stage, we adopt the MMI
Prefix Score and MMI Alignment Score algorithms for AED
and NT respectively [20]. The beam size of decoding is fixed

to 10 and the decoding algorithms used in AED and NT
systems are described in [2] and [13]. The E2E ASR baselines
are mainly implemented by Espnet [23].
3) Language Models: We compare the performance of three
types of LMs: word-level N-gram LM, character-level N-gram
LM and character-level neural network LM (NNLM). All LMs
used in Aishell-1 and Aishell-2 are trained from transcriptions
of the training set and adopt no external resources. An addi-
tional text corpus is used in the 21k-hour experiments. Before
training the word-level LM, the transcriptions are segmented
into word-level using jieba1. All N-gram LMs are trained by
kaldi lm2 while all NNLMs use a standard 1-layer LSTM
with the hidden size of 650. Unless otherwise specified, the
default settings for the decoding are described as follows. The
LM weight of shallow fusion method (a.k.a, βAED and βNT)
is fixed to 0.4 when using word-level N-gram LM. However,
we enumerate the LM weights of character-level N-gram LMs
and NNLMs in set {0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.5, 2.0} and
report the best results. Also, the default order of word-level
N-gram LM is 3 and the log-semiring is used. The WFSA-
related operations are implemented by K23.

B. Results on Aishell-1 and Aishell-2

We present our experimental results on Aishell-1 and
Aishell-2 in table I. Our main observations are listed below.
1) LM weight of shallow fusion: The LM weight of shallow
fusion is the first hyper-parameter we investigate. As shown in
exp.1-6 and exp.12-17, LM weight of 0.4 consistently shows
the best improvement on both ASR systems, which explains
our default choice of this weight. Also, our method is robust to
the choice of LM weight: compared with the baseline systems
(exp.1, exp.12), CER reduction is consistently observed when
the LM weight is smaller or equal to 0.8.
2) Semiring: For both E2E ASR frameworks, the performance
difference caused by the choice of the semiring is negligible
(exp.3 vs. exp.7; exp.14 vs. exp.18).
3) Order of word-level N-gram LM: We find word-level
N-gram LMs of higher order do not show further perfor-
mance improvement (exp.3 vs. exp.8; exp.14 vs. exp.19). One
explanation of this is that: since we only use the training
transcriptions of Aishell datasets, the higher-order terms (e.g.,
4-gram terms) seen in LM training are rarely seen in the test
set, as the training transcriptions are small in volume and
achieve poor coverage.
4) Comparison with Word N-gram Rescore: The sequence-
level LM scores computed by Eq.5 can also be used for
rescoring after the N-best hypotheses are proposed by ASR
systems. However, slight performance degradation is observed
if the word N-gram LM is adopted in rescoring rather than in
on-the-fly decoding (exp.3 vs. exp.9; exp.14 vs. exp.20).
5) Comparison with character-level LM: We compare the
performance of our method with those character-level LMs,
including both the N-gram LM and the neural network LM
(exp.3 vs. exp.10-11; exp.14 vs. exp.21-22). Although the
character-level LMs do provide some improvement on the

1https://github.com/fxsjy/jieba
2https://github.com/danpovey/kaldi lm
3https://github.com/k2-fsa/k2
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No. System LM type N-gram order Semiring LM weight Aishell-1 Aishell-2 RTF(CPU)4

dev test ios android mic Aishell2-ios
1

AED

- - - 0.0 4.55 5.10 5.93 7.04 6.79 1.45
2

Word N-gram
3 log (Eq.9)

0.2 4.22 4.62 5.43 6.48 6.21 2.03
3 0.4 4.08 4.45 5.26 6.22 5.92 2.02
4 0.6 4.09 4.43 5.27 6.22 5.99 2.00
5 0.8 4.20 4.58 5.56 6.53 6.26 2.03
6 1.0 4.42 4.80 6.00 6.94 6.77 2.04
7 3 tropical (Eq.8) 0.4 4.08 4.45 5.26 6.22 5.92 2.01
8 4 log (Eq.9) 0.4 4.08 4.46 5.26 6.22 5.93 2.08
9 Word N-gram Rescore 3 log (Eq.9) (0, 2.0] 4.11 4.47 5.31 6.27 6.03 1.45

10 Char. N-gram 6 - (0, 2.0] 4.24 4.63 5.25 6.17 5.94 1.60
11 Char. NN - - (0, 2.0] 4.41 4.64 5.79 6.77 6.51 1.87
12

NT

- - - 0.0 4.20 4.60 5.41 6.56 6.39 0.50
13

Word N-gram
3 log (Eq.9)

0.2 3.97 4.29 5.13 6.15 6.05 4.12
14 0.4 3.87 4.18 5.06 6.08 5.98 4.48
15 0.6 3.87 4.22 5.16 6.23 6.09 4.43
16 0.8 4.00 4.33 5.37 6.36 6.23 4.25
17 1.0 4.25 4.55 5.65 6.71 6.55 4.26
18 3 tropical (Eq.8) 0.4 3.87 4.18 5.06 6.08 5.98 4.59
19 4 log (Eq.9) 0.4 3.87 4.18 5.06 6.08 6.00 4.50
20 Word N-gram Rescore 3 log (Eq.9) (0, 2.0] 3.93 4.27 5.11 6.08 6.02 0.50
21 Char. N-gram 6 - (0, 2.0] 4.11 4.23 5.28 6.36 6.27 0.90
22 Char. NN - - (0, 2.0] 4.09 4.43 5.33 6.41 6.28 1.62

TABLE I: Results on Aishell-1 and Aishell-2 datasets. CER and RTF are reported. All LMs are adopted using shallow fusion.

recognition performance, our word-level N-gram LM outper-
forms the character-level counterparts in most test sets and
frameworks. This observation validates our claim that the
word-level information is beneficial during decoding.
6) Different E2E ASR frameworks: The results suggest that
the proposed method is compatible with both AED and NT
systems and achieves performance improvement consistently
(exp.1,3 vs. exp.12,14).
7) Real-time factor (RTF): Besides the recognition accuracy
(CER%), the real-time factor (RTF) is also concerned. We find
that hyper-parameters like LM weight, LM order and semiring
have negligible impact on the computational overhead. For
AED, the computational overhead is close to that of NNLM
(2.02 to 1.87). For NT, the RTF of our method is 4.48. The
computational overhead on the NT system is much higher than
that of the AED system since the NT systems assess the partial
hypotheses for each frame and each word sequence length. The
acceleration of our method on NT is left for future work.

System Aishell-1 Aishell-2
dev/test ios/android/mic

SpeechBrain [24] - / 5.58 - / - / -
Espnet [25] 4.4 / 4.7 6.8 / 7.6 / 7.4
Wenet [26] - / 4.36 5.35 / - / -
Icefall - / 4.26 - / - / -
Ours
AED 4.55 / 5.10 5.93 / 7.04 / 6.79

+ Word N-gram 4.08 / 4.45 5.26 / 6.22 / 5.92
NT 4.20 / 4.60 5.41 / 6.56 / 6.39

+ Word N-gram 3.86 / 4.18 5.06 / 6.08 / 5.98

TABLE II: Results on Aishell-1 and Aishell-2 datasets. All
results are in CER%. No external resources are used.

We finally conclude our experimental results and compare
them with other competitive frameworks in table II. As sug-
gested in the table, significant CER reduction is consistently
observed in both E2E ASR frameworks and various test sets.
The maximum and minimum absolute CER reduction are

4single thread; Pytorch implementation; Intel Xeon 8255C CPU, 2.5GHz

0.87% (AED, Aishell-2 mic) and 0.34% (NT, Aishell-1 dev)
respectively. The NT model with our word-level N-gram LM
achieves all of the best results except that on the Aishell-2
mic set. Our best results on Aishell-1 test set and Aishell-2
test-ios set are 4.18% and 5.06% respectively. To the best of
our knowledge, these are the state-of-the-art results on these
two datasets. The success of our method emphasizes that the
adoption of word-level N-gram LM is promising.
C. Results on 21k-hour Mandarin dataset

We show that the proposed method is still effective for large-
scale ASR tasks and external text corpus. Specifically, we train
an NT model on the 21k-hour speech data and the word-level
LM (3-gram, with the size of 3.4G) is constructed from an
external text corpus. As shown in table III, incorporating word-
level N-gram LM based on the proposed method consistently
achieves better recognition performance on all 6 test sets.
The absolute CER reduction is 1.1% on average while the
maximum relative CER reduction is 14.8% (in reading set).

Test set re tr gu tv mu ed Mean
NT 5.4 17.8 19.0 9.2 14.5 11.8 13.0

+ Word N-gram 4.6 16.4 17.0 8.4 13.3 11.4 11.9

TABLE III: Experimental results on a 21k-hour Mandarin
with w/o external word-level N-gram LM. re: reading; tr:
translation; gu: guild; tv: television; mu: music; ed: education.

IV. CONCLUSION

In this work, we propose a new method to integrate the
word-level N-gram language models into the decoding process
of end-to-end automatic speech recognition systems. Com-
pared with the language models that work in subword-level,
our method consistently achieves better performance. Also, our
method is robust to various hyper-parameters and is applicable
to large-scale ASR tasks. Experimentally, we achieve state-of-
the-art results on two of the most popular Mandarin datasets.

5This research is partially supported by NSFC (No:6217021843)
and Shenzhen Science & Technology Fundamental Research Programs
(No:JCYJ20180507182908274 & JSGG20191129105421211).
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