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Abstract—Non-intrusive speech intelligibility (SI) prediction
from binaural signals is useful in many applications. However,
most existing signal-based measures are designed to be applied to
single-channel signals. Measures specifically designed to take into
account the binaural properties of the signal are often intrusive
– characterised by requiring access to a clean speech signal –
and typically rely on combining both channels into a single-
channel signal before making predictions. This paper proposes a
non-intrusive SI measure that computes features from a binaural
input signal using a combination of vector quantization (VQ) and
contrastive predictive coding (CPC) methods. VQ-CPC feature
extraction does not rely on any model of the auditory system and
is instead trained to maximise the mutual information between
the input signal and output features. The computed VQ-CPC
features are input to a predicting function parameterized by a
neural network. Two predicting functions are considered in this
paper. Both feature extractor and predicting functions are trained
on simulated binaural signals with isotropic noise. They are
tested on simulated signals with isotropic and real noise. For all
signals, the ground truth scores are the (intrusive) deterministic
binaural STOI. Results are presented in terms of correlations
and MSE and demonstrate that VQ-CPC features are able to
capture information relevant to modelling SI and outperform
all the considered benchmarks – even when evaluating on data
comprising of different noise field types.

Index Terms—Non-intrusive speech intelligibility prediction;
self-supervised representation learning; contrastive predictive
coding.

I. INTRODUCTION

Speech intelligibility (SI) prediction aims to predict the

ability of an average listener to comprehend speech within

a signal – potentially corrupted by noise, reverberation or

processing artefacts. SI is defined as the number of words

or phonemes that can be correctly identified by assessors. It

is often reported using the speech reception threshold (SRT)

defined to be the level of degradation for which only 50% of

the speech items are correctly identified [1]. Listening tests

are typically considered the gold standard to measure SI.

However, these tests are costly, time-consuming and cannot be

applied in real-time, making the use of signal-based measures

necessary. Signal-based measures of speech intelligibility can

be categorized as either intrusive or non-intrusive. The compu-

tation of intrusive measures requires a clean reference signal
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in addition to the test signal, whereas non-intrusive measures

can be computed from the test signal only. Consequently, only

non-intrusive measures can be applied in real-time settings.

Additionally, SI largely depends on the presence of binaural

cues [2] and so SI measures should be developed to incorporate

them.

Most signal-based measures of SI were originally designed

for telephony applications and applied only to single-channel

signals. Among these measures the articulation index [3],

the speech transmission index (STI) [4], the speech intelli-

gibility index (SII) [5], the short-time objective intelligibility

(STOI) [6] and mutual-information-based techniques, such as

the algorithm proposed in [7], are intrusive. Non-intrusive

measures include a non-intrusive extension of the STOI [8],

[9], that relies on estimating the amplitude envelope of the

clean speech from the input signal, and measures relying on

machine learning techniques. Some measures use a trained

speech recognizer as proposed in [10], [11] or a neural network

trained to predict SI from a sequence of spectral features [12].

The aforementioned measures use a single-channel signal

as input. Certain measures instead make predictions from

binaural signals, aiming to take into account the relevance

of binaural cues in modelling the intelligibility of speech

signals. Notably, several binaural measures rely on simple

equalization-cancellation (EC) models [13], often being com-

bined with the SII [14], [15]. However, these measures do not

take into account the impact that non-linear processing has on

SI. The binaural STOI (BSTOI) uses an EC model to combine

both channels of the binaural signal into a single-channel

signal used as input to the STOI measure. BSTOI was later

refined into the deterministic BSTOI (DBSTOI) that produces

a deterministic output [16]. Both BSTOI and DBSTOI are

intrusive. A non-intrusive measure has been proposed in [17],

where the blind binaural preprocessing stage from [18] is used

to process the binaural signal into a single-channel signal that

is then input to an automatic speech recognizer (ASR). The

SI is finally predicted by applying a trained mapping between

the mean temporal distance (MTD) – a representation of the

ASR error [19] – and the SRT.

Some measures do not rely on on any model of the auditory

system and input features to a predicting function that needs

to be trained. Such methods include the use of both short-

and long-term features input to a classification and regression

tree [20] or the use of STOI like features as input to a convolu-

tional neural network [21]. The measure proposed in this paper

applies a similar approach but uses features that are computed

as a latent representation of the input binaural signal using

a combination of contrastive predictive coding (CPC) [22]
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and vector quantization (VQ) [23] methods. Previous uses

of CPC in audio applications were limited to single-channel

audio inputs [22], [24], [25] and images [22]. CPC models

excel at representing “slow features” that span many time

steps [22] which we believed would make it suited for speech

intelligibility prediction (SIP). This is in contrast to other self-

supervised methods such as autoencoders which attempt to

represent all details because of their simple reconstruction

loss. Additionally, CPC models do not need to reconstruct

the input signal like autoencoder methods. This results in

improved computational efficiency which is significant for

high-dimensional signals such as raw waveforms.

The resulting VQ-CPC features are input to a predicting

function. Two predicting functions are considered in this

paper to highlight the capacity of the proposed features to

capture useful and accessible information and to show that

our measure is competitive.

The remainder of this paper is structured as follows. The

computation of the proposed features and the considered

predicting functions are described in Section II. The exper-

iments1, including the used datasets of simulated data and

considered benchmark, are described in Section III. The results

are presented in Section IV and Section V concludes the paper.

II. PROPOSED METHOD

The proposed method aims at estimating the speech intelli-

gibility from an M channel2 signal xm(n), of length N and

sampling frequency fs, where m and n denote the channel

index and sample index respectively. Such a signal can be

modelled as:

xm(n) = s(n) ∗ hm(n) + vm(n), (1)

where s(n) denotes the anechoic speech signal, hm(n) denotes

the room impulse response (RIR) between the speech source

and the microphone and vm(n) denotes an additive noise sig-

nal. Aiming at non-intrusive prediction, the proposed method

estimates the speech intelligibility from xm(n) only without

knowledge of s(n). This prediction relies on first computing

a sequence of features to be input to the predicting function.

A. Feature computation

The microphone signal is divided into T = ⌈N/H⌉ over-

lapping frames of length W , where H denotes the hop length.

The samples in each tth frame are used to construct a vector

of length M ·W :

xt =
[

x0(tH), x0(tH + 1), . . . , x0(tH +W − 1),

. . . (2)

xM−1(tH), xM−1(tH + 1), . . . , xM−1(tH +W − 1)
]T

,

resulting in the time-ordered sequence of T vectors:

x =
{

x0, x1, . . . , xT−1

}

. (3)

1Tools to generate the datasets and reproduce the experiments are made
available online: https://github.com/vvvm23/stoi-vqcpc

2Our method can be used on an arbitrary number of channels, but we simply
use M = 2 throughout.

The feature computation results in the sequence:

c =
{

c0, c1, . . . , cT−1

}

, (4)

where each vector of length K is defined as:

ct =
[

ct(0), ct(1), . . . , ct(K − 1)
]T

, (5)

where ct(k) denotes the kth feature coefficient extracted from

the tth frame. The feature extraction is typically designed such

that K < M · W and learns to extract sequences c that

maximise the mutual information between the input and output

sequences:

I(x; c) =
∑

x,c

p (x, c) log

(

p (x|c)

p (x)

)

. (6)

To do so, VQ and CPC methods are used to compute the

sequence c as a latent representation of the input sequence x.

The computation of these VQ-CPC features consists of three

main components: a non-linear encoder, a VQ codebook, and

an autoregressive aggregator.

First, the non-linear encoder f (·) maps x to an intermediate

latent representation z̃:

f (x) = z̃ =
{

z̃0, z̃1, . . . , z̃T−1

}

, (7)

where z̃ℓ denotes the ℓth vector, each of length E. VQ is

applied to map each vector in z̃ to an embedding vector from

a finite codebook C yielding the sequence:

z =
{

z0, z1, . . . , zT−1

}

, (8)

where each ℓth vector zℓ is computed as:

zℓ = q (z̃ℓ) = arg min
ei∈C

||z̃ℓ − ei||2 (9)

Where ei denotes the ith in the C embedding vectors of the

codebook. Finally, an autoregressive aggregator g (·) is applied

to compute each vector from the sequence in (4) as:

ct = g (zℓ≤t) . (10)

B. VQ-CPC training

Training of f (·), q (·) and g (·) is conducted end-to-end to

maximize the mutual information defined in (6). The proposed

approach follows the method in [22] with additional loss terms

to support the added VQ codebook [26]. To encourage shared

information to be encoded, each vector ct is used to predict

zt+k for up to k steps in the future. However, rather than

modelling the distribution p (xt+k|ct), the proposed method

models the density ratio defined as:

σk (xt+k, ct) ∝
p (xt+k|ct)

p (xt+k)
. (11)

The density ratio σk (xt+k, ct) may be unnormalized and, in

this paper, is computed as:

σk (xt+k, ct) = exp
(

z
T

t+kWkct

)

, (12)

where Wk denotes a learned linear projection and zt+k is

the output of the encoder corresponding to xt+k, used as

a proxy for more efficient computation of the ratio. Using

https://github.com/vvvm23/stoi-vqcpc
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this definition, the encoder and aggregator are trained by

minimising the InfoNCE loss L, based on noise-contrastive

estimation and importance sampling:

L = β · Lvq +
1

k

k
∑

i=1

Li, (13)

where Lvq denotes the weighted VQ commitment loss defined

as:

Lvq =
1

T

T−1
∑

ℓ=0

||z̃ℓ − sg[ei]||
2
2 (14)

where ei is the corresponding embedding vector of z̃ℓ and

sg[·] is the stop-gradient operator [26] and:

Lk = −E
X

[

log
σk(xt+k, ct)

∑

xj∈X σk(xj , ct)

]

, (15)

where X is a set of many negative samples drawn from

p(xt+k) and one positive sample drawn from p(xt+k|ct)
[22]. The codebook embedding vectors are updated using

exponential moving averages (EMA) as described in [26].

C. Intelligibility score predictor

The computation of the VQ-CPC features does not rely on

any assumptions about the downstream task for which these

features are used. In this paper, the sequence c is input to

a predicting function for the purpose of SI prediction. Two

different predicting functions are considered.

The first considered predicting function uses each vector ct
as input to a single shared linear layer in order to compute a

per-frame score. The score assigned to the complete sequence

is the mean of the scores computed from each vector. This

simple predicting function is used to demonstrate how easily

accessible information about SI is when using the VQ-CPC

features. This predicting function is referred to as “Small” in

the remainder of the paper.

The second considered predicting function first builds a

global representation using sequence pooling (SeqPool) meth-

ods originally used for the classification of images [27]. A

global representation is computed by applying SeqPool to each

vector in the sequence c. In this case SeqPool inputs each

vector ct to a linear layer that outputs a scalar before applying

softmax to the computed scalars, forming weightings for each

frame. The weighted sum of each vector is then computed,

forming the global representation. This global representation

is then input to a small multi-layer perceptron (MLP) to

compute the estimated speech intelligibility score assigned

to the sequence c. This predicting function is referred to as

“Pool” in the remainder of the paper.

Both Small and Pool are trained to minimise the mean-

squared error (MSE) between the estimated and true speech

intelligibility scores (see Section III).

III. EXPERIMENTAL SETUP

A. Generated datasets

For training of both the VQ-CPC model and the predict-

ing functions, training and development datasets of binaural

signals are generated. All signals have a sampling frequency

fs = 16 kHz and are generated as per (1). The clean anechoic

speech is extracted from either the 360 hour training set or

the 5 hour development set from the LibriSpeech corpus [28].

Reverberant speech is generated by convolving each utterance

of clean speech with a binaural RIR (BRIR) randomly selected

from the Aachen Impulse Response Database [29]. For each

reverberant utterance, two different noise segments of the same

length are selected from the noise signals in the MUSAN

database [30]. These two signals are used to generate the two-

channel noise signal of a spherically isotropic noise field using

the method from [31]. Finally, this generated noise signal is

added to the reverberant signal after being scaled to a chosen

signal-to-noise ratio (SNR), randomly selected between -10 dB

and 30 dB, measured in the first channel according to [32].

In the training and development sets, this process is repeated

three times for each clean speech utterance.

Additionally, two testing datasets are generated, hereafter

denoted “Testiso” and “Testreal”. The signals in Testiso are

generated using the same method, as well as noise and

BRIR datasets, as for the training and development sets but

using clean speech from the test split of the LibriSpeech

corpus. The signals in Testreal are generated by convolving

the speech signals used as target utterances in the first Clarity

Challenge [33], [34] with BRIRs randomly selected from the

BRIRs available in [35] recorded in either a cafeteria or a

courtyard. In this case, two-channel noise signals recorded at

the same location are used and added to the reverberant signals

with an SNR randomly selected and measured.

A total of 1090.8, 16.2, 5.4 and 10.4 hours of data are

generated in the training, development, Testiso and Testreal

dataset, respectively. Labelling this large amount of data in

terms of intelligibility would be a daunting task and the

experiments aim mostly at evaluating the use of the proposed

features. Consequently, we labeled all signals with an intrusive

measure known to highly correlate with intelligibility and the

ground truth is here defined as the DBSTOI computed using

the clean reverberant signal and the noisy reverberant signal

as input [16].

B. Parameters of proposed method

For training, we use x of length T = 40960 as input to

the encoder f (·). The encoder has a frame length and hop

size of 25 ms and 10 ms respectively. It is implemented as a

series of five convolutional blocks, each consisting of a one-

dimensional convolutional layer with 256 filters, a dropout

layer [36], batch normalisation [37] and the rectified linear

unit (ReLU) activation function. The strides for each block

are [5, 4, 2, 2, 2] and the kernel sizes are [10, 8, 4, 4, 4]. VQ is

applied using a codebook of 512 vectors of dimensionality

128, with the commitment loss defined as in (14). The aggre-

gator g (·) is implemented as a two-layer gated recurrent neural

network (GRU) [38] with 128 hidden channels. Hence, in our

experiments, K = E. The InfoNCE loss is computed using 10
negative samples and k = 12 steps. Augmentation is applied

as random channel and polarity swapping, additive noise and

random audio gain. All resulting sequences c (with K = 128)
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Fig. 1. Performance of the proposed VQ-CPC and considered benchmark features on the Testiso (left) and Testreal (right) datasets when using either the Small
or Pool predicting function. All correlations appeared significant, with p-values inferior to 0.01.

in the training set are used to train the considered predicting

functions. VQ-CPC features are extracted from Testiso and

Testreal using the complete VQ-CPC model trained on the

training set.

The Small predicting function consists of a single layer

mapping each feature vector of length K to a single element

followed by the sigmoid activation function. The Pool predic-

tor is implemented as a single shared linear layer to compute

the weighting and a MLP with one hidden layer of size 2K .

The hidden layer uses ReLU as its non-linearity and the output

layer consists of a single element followed by the sigmoid

activation function.

Training and testing of the VQ-CPC model and predicting

functions were implemented in PyTorch [39]. The total num-

ber of trainable network weights in the VQ-CPC model is

≈ 1.74× 106.

C. Benchmark and figures of merit

The performance of the proposed VQ-CPC is measured in

terms of Pearson’s correlation coefficient (LCC) and MSE

between the ground truth and the output of the predicting

functions. The experiments aim to quantify the ability of

VQ-CPC features to represent information useful for speech

intelligibility prediction. To this end, their performance is

compared with the use of mel-spectrogram (Mel), with deltas

and double-deltas, and with envelopes extracted in third-

octave bands (TOB) similarly as used in [21]. All features are

extracted from either the first channel (mono), concatenated

from both channels (binaural) or extracted from the single-

channel signal computed using a blind binaural preprocessing

stage [18] (BSIM20). The type of signal is indicated in

subscript in the following. All features are computed using

the same frame length and hop size as the VQ-CPC. For all

considered features, the predicting functions Small and Pool

are trained using the same dataset as for VQ-CPC.

IV. RESULTS

All results are depicted in Fig. 1. On Testiso, VQ-CPC

features yield the best performance regardless of the type of

signals from which they are computed, when using either the

Small or the Pool predicting function. Using Small and VQ-

CPC features yields a LCC 0.84 and an MSE of -20.7 dB.

Using Pool and VQ-CPC features yields a LCC of 0.94 and

an MSE of -22.7 dB. In contrast with the other considered

features, the difference in performance between the use of

Small and Pool is rather modest. Success applying Small

suggests that the VQ-CPC features contain easily accessible

information about the intelligibility of speech.

On Testreal, the performance of all combinations of features

and predicting functions decreases, as expected. It can however

be noted that the TOB features, that performed the least

satisfactorily on the less challenging Testiso, outperform Mel

on Testreal. This seems to confirm their suitability in realistic

scenarios [21]. The proposed VQ-CPC features remain the best

performing of the considered features. Using VQ-CPC features

computed from binaural signals as input to the Pool predicting

function yields LCC of 0.81 and an MSE of -20.2 dB.

A more powerful predictor such as STOI-Net [12] could be

improve performance further, but we emphasize the purpose

of our study is to show that good performance can be obtained

with VQ-CPC features alone. Though the VQ-CPC were

here proposed to predict intelligibility from binaural signals,

the difference in performance between VQ-CPCmono, VQ-

CPCBSIM20 and VQ-CPCbinaural is modest. Further exper-

imentation, e.g., using intelligibility scores as ground truth

rather than an intrusive measures, are needed to determine if

the VQ-CPC features do capture information such as binaural

cues. Regardless, the difference in network size between the

various VQ-CPC models is negligible.

V. CONCLUSION

This paper proposes to use VQ-CPC features as input to a

trained neural network to non-intrusively predict intelligibil-

ity from binaural signals. The performance of the proposed

measure is assessed in terms of correlation and MSE. Results

show that the VQ-CPC features are effective in encoding

readily accessible information relevant for SI prediction and

the features outperform all considered benchmarks. This is

despite VQ-CPC features not relying on any assumptions

about the downstream task of SI prediction.
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E. Porter, and R. Viveros-Muñoz, “Clarity-2021 challenges: Machine
learning challenges for advancing hearing aid processing,” in Proc.

Interspeech, Brno, Czech Republic, Aug. 2021.
[34] S. Graetzer, M. Akeroyd, J. Barker, T. J. Cox, J. F. Culling, G. Naylor,
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