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Active User Detection and Channel Estimation for
Spatial-based Random Access in Crowded Massive

MIMO Systems via Blind Super-resolution
Abolghasem Afshar, Vahid Tabataba Vakili, Sajad Daei

Abstract—This work presents a novel framework for ran-
dom access (RA) in crowded scenarios of massive multiple-
input multiple-output (MIMO) systems. A huge portion of the
system resources is dedicated as orthogonal pilots for accurate
channel estimation which imposes a huge training overhead.
This overhead can be highly mitigated by exploiting intrinsic
angular domain sparsity of massive MIMO channels and the
sporadic traffic of users, i.e., few number of users are active
to send or receive data in each coherence interval. Besides, the
continuous-valued angles of arrival (AoA) corresponding to each
active user are alongside each other forming a specific cluster. To
exploit these features in this work, we propose a blind clustering
algorithm based on super-resolution techniques that not only
detects the spatial features of the active users but also provides
accurate channel estimation. Specifically, an off-grid atomic
norm minimization is proposed to obtain the AoAs and then
a clustering-based approach is employed to identify which AoAs
correspond to which active users. After active user detection,
an alternating-based optimization approach is performed to
obtain the channels and transmitted data. Simulation results
demonstrate the effectiveness of our approach in AoA detection as
well as data recovery which indeed provides a high performance
spatial-based RA in crowded massive MIMO systems.

Index Terms—Crowded massive MIMO, Random access,
Super-resolution, Atomic norm, Semi-definite programming,
Convex optimization.

I. INTRODUCTION

NOWADAYS, the number of wirelessly connected devices
has been vastly increased by the development of appli-

cations such as Internet of Things (IoT), social networking
and next generations of cellular communications including
massive machine-type communications (mMTC), enhanced
mobile broadband communications (eMBB) and ultra-reliable
low-latency communications (URLLC). There are lots of
advantages with massive MIMO systems such as increasing
the system throughput and the energy efficiency [1], [2]. As
such, massive multiple-input multiple-output (MIMO) systems
have received remarkable attention during the past few years.
However, all of these advantages are dependent on accu-
rate channel state information (CSI) in coherent transmission
which is a highly challenging task. Due to the reciprocity
of channel estimation (CE), Time Division Duplexing (TDD)
mode is often preferred to Frequecny Division Duplexing
(FDD) in MIMO systems. However, it requires a portion
of resources as pilots or training signal in each Coherence
Interval (CI) to estimate the channels corresponding to active
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users. In this regard, Random Access (RA) to pilots (RAP)
is a promising solution for this pilot allocation which divides
into two categories: grant-based and grant-free. In grant-based
schemes (see [3], [4]), multiple active user equipment (UE)s
first transmit dedicated preambles selected from a pool of pilot
sequences to access the Base Station (BS). Contention resolu-
tion schemes are then required if multiple users select the same
pilots. Since large number of collisions occurs, the BS cannot
resolve all of the contentions and thus many users are not
able to access the BS. [4] proposes a strongest user collision
resolution protocol to resolve this issue in crowded scenarios
(which neglects the users in the edge of the cells) by using
orthogonal pilots. [3] employs a deterministic Compressed
Sensing (CS)-based RA scheme. As the signaling overhead
and access latency is directly proportional to the number of
users, conventional grant-based RA fails to support massive
connectivity. In contrast, in grant-free RAP protocol, each
active UE transmits pilots with embedded data without waiting
for permission by BS [1], [5]. By using orthogonal pilots in
this case, the number of active users that can access the BS is
confined to the number of orthogonal pilots which is severely
limited due to the short channel coherence time. Moreover,
using non-orthogonal pilots in grant-free case complicates the
task of active user detection (AUD) due to the intra- and
inter-cell interference caused by correlated pilots [6], [7]. A
large number of research works consider coordinated grant-
free schemes in which the BS knows the pilots in advance
(e.g. [6], [8]–[10]). As an example of this category, [6]
proposes a statistical Approximate Message Passing (AMP)-
based algorithm for joint AUD and CE. Their method exploits
the sporadic traffic of active users and the sparse nature of the
channel but needs the full knowledge of the channels and noise
distributions and assumes the angle of arrivals (AoAs) to be on
a predefined domain of grids. Both of these assumptions are
not generally satisfied in practice. Another line of research
works lying in the coordinated grant-free category devotes
to covariance-based activity identification which formulates
the problem as an maximum likelihood estimation (see e.g.
[8], [10]–[12]). It also has been shown that covariance-based
algorithms outperforms AMP with the same length of the
pilots [8]. Such kinds of schemes are based on the accuracy
of the sample covariance of the measurement matrix. In
order to have an accurate covariance, the number of required
measurements has to be far more than the degrees of freedom
(the true number of unknowns) and imposes a huge waste
in bandwidth resources and cost. Overall, there are specific
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disadvantages with the mentioned prior works: full knowledge
of channel and noise distribution, e.g. [6], [13]; the number of
active users that can access the BS is severely limited, e.g. [6],
[8], [14]; A very large number of antennas and measurements
are required, e.g. [7], [8], [12]. However, there is a common
issue that the mentioned prior works are coordinated. This
means that the BS has to be first know some pilots in
advance for AUD which increases access latency, subsequently
preventing to achieve a high spectral efficiency and seems
to be not practical since the BS does know which user lies
in which cell. It should be mentioned that [15] provides a
statistical uncoordinated data recovery and channel estimation
(not necessarily designed for RA), however, besides its high
complexity and the issue regarding the discrete nature of
AoAs, it needs full knowledge of prior distributions of data and
channel in advance which seems to be impractical. To solve
the mentioned challenges, we propose an uncoordinated grant-
free RAP deterministic scheme in crowded scenarios of mas-
sive MIMO systems which leverages the intrinsic features of
massive MIMO channels (angular domain sparsity of massive
MIMO channels) as well as the sporadic traffic of users. The
task of extracting such features from a few number of mea-
surements builds upon the well-known framework of CS [16].
Precisely, CS suggests a framework for recovering discrete-
index parameters i.e. the unknown parameters are confined
to be on a predefined domain of grids. There is also a more
recent framework called continuous CS (or super-resolution)
[17]–[20] which assumes that the unknown parameters can
lie anywhere and are not confined to be on the predefined
grids. The aforementioned features are available in massive
MIMO systems with massive number of users. For example,
the physical channel of massive MIMO systems, employed
in high frequencies (millimeter wave), have continuous sparse
structure i.e. signal is received out of few off-grid (continuous)
angles in BS antenna arrays and they can have any arbitrary
values [21]. This is due to the fact that signals with higher
frequencies are more likely to be blocked by obstructions and
few multi-path components (MPCs) contribute to the channel.
Another feature is sporadic traffic of massive users which
means only few users want to send their data at the same
time. It has also been shown that the channels between users
and BS exhibit a clustered continuous sparsity pattern [6].
This implies that the AoAs corresponding to each user are
alongside each other, few number of clusters are active and
the AoAs have continuous-index values. For AUD and channel
estimation, we design a deterministic optimization framework
to encourage the mentioned features which does not need any
distributions of channels and users’ data. Our framework has
three stages: first, we find the AoAs by solving an optimization
problem, then a clustering-based algorithm is proposed to
detach the angles corresponding to each active user and finally
an alternative optimization algorithm is developed to estimate
complex amplitudes of the channels and data/primary pilots
transmitted by active users in a blind way. By our approach,
the limitation in the number of adopted simultaneous users
in crowded scenarios of massive MIMO systems would be
resolved without any need for coordination between BS and
users in advance. The organization of the paper is as follows:

In Section II, the system model of massive MIMO is presented.
Section III is about our proposed blind super resolution method
and provides an algorithm for blind detection and CE. Lastly,
Section IV provides some numerical experiments to verify our
proposed method. Lastly, the paper is concluded in Section V.

Notations: We use boldface lower-and upper-case letters
for vectors and matrices, respectively. The i-th element of
a vector e.g. x and the pi, jq element of a matrix e.g. X
are respectively shown by xi and Xpi,jq. For vector x P

Cn and matrix X P Cn1ˆn2 , the `2 norm and Frobenius
norm are defined respectively as }x}2 :“ p

řn
i“1 |xpiq|

2q
1
2

}X}F :“
b

řn1

i“1

řn2

j“1 |Xpi, jq|
2. X ľ 0 means that X is a

positive semidefinite matrix. For two arbitrary matrices A,B,
xA,ByR represents the trace of BHA. PΩp¨q is a operator
transforming an arbitrary matrix to a reduced matrix with rows
indexed by Ω.

II. SYSTEM MODEL

We consider a typical uplink access scenario for MIMO-
OFDM systems where there are one BS equipped with an
N -element uniform linear array (ULA) and K single-antenna
users along with OFDM modulation to combat inter-symbol
interference [6, Section II]. The sub-channel corresponding to
each OFDM sub-carrier between the k-th user and the BS is
modeled as (see [6, Equ. 2] or [15, Equ. 7]):

hk “
Lk
ÿ

l“1

αkl apθ
k
l q “ Akα

k P CNˆ1, (1)

in which Lk is the number of physical paths between k-th user
and BS, θkl is the Angle of Arrival (AoA) of the l-th path, αkl
is the complex gain of the l-th path,

arpθq “
1?
N
r1, e´j2π∆r cospθq, ..., e´j2π∆rpN´1q cospθqsT (2)

is the receive steering vector, αk :“ rαk1 , ..., α
k
Lk
sT , and

Ak :“ rarpθ
k
1 q, ...,arpθ

k
Lk
qs P CNˆLk . Due the sparse char-

acteristics of massive MIMO channels, it holds that Lk ! N .
The sub-channel is considered to be block fading, i.e., it is
constant during several CIs where each is denoted by T . In
each sub-carrier, the received signal at the BS after T time
slots at the sensors indexed by Ω Ď t1, ..., Nu (with length
|Ω| :“M ă N ) becomes in the form of ( [22], [6, Equ. 3] or
[15, Equ. 1]):

YΩ “ PΩpY q “ PΩp

K
ÿ

k“1

hks
H
k q

loomoon

:“Xk

`W P CMˆT , (3)

where sk P CT is the transmitted signal from k-th UE, W P

CMˆT is the additive noise matrix, each element of which
is distributed as CN p0, σ2q and Xk :“

řLk

l“1 α
k
l apθ

k
l qs

H
k .

Inspired by [23], and by defining ckl :“ αkl }sk}2 and
φk :“ sk

}sk}2
, Xk can be expressed as a sparse lin-

ear combinations of the matrix atoms in the atomic set
Ak “ tarpθqφ

H
k : }φk}2 “ 1, θ P p0, πqu, which are regarded

as building blocks of Xk “
řLk

l“1 c
k
l apθ

k
l qφ

H
k . The aim is to

extract the continuous parameters of Xk (i.e. the angles θk)
by observing YΩ. Note that for inactive users, φk and thus
Xk are equal to zero.
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III. PROPOSED BLIND SUPER-RESOLUTION METHOD

In (3), we have an under-determined set of equations with
NT observations and KNT unknowns. While this problem
has infinite number of solutions, it could be transformed to
a tractable problem by assuming that Lk ! N which is
reasonable in massive MIMO systems. This strategy is built
upon well-known continuous CS approaches [17], [18], [24]
and provides a unique optimal set of solutions for matrices
Xks in (3) leading to the least number of atoms under
the affine constraints of (3). Thus, we form the following
optimization problem to reflect the structure of Xks:

min
ZkPCNˆT

k“1,...,K

K
ÿ

k“1

}Zk}Ak,0 s.t.}YΩ ´

K
ÿ

k“1

PΩpZkq}F ď η (4)

where }Zk}A,0 :“ inf
 

Lk : Zk “
řLk

l“1 c
k
l apθ

k
l qφ

H
k , c

k
l ą

0,apθkl qφ
H
k P Ak

(

is the atomic `0 function which computes
the least number of atoms to describe Zk. As (4) is an NP-
hard problem in general, we relax (4) into its closest convex
optimization problem which is stated as:

min
ZkPCNˆT

k“1,...,K

K
ÿ

k“1

}Zk}Ak
s.t. }YΩ ´

K
ÿ

k“1

PΩpZkq}F ď η, (5)

where the atomic norm } ¨ }Ak
is the best convex surrogate

for the number of atoms composing Zk (i.e. } ¨ }Ak,0) and
is defined as the minimum of the `1 norm of the coefficients
forming Zk:

}Zk}A :“ inftt ą 0 : Zk P tconvpAkqu “

inft
Lk
ÿ

l“1

ckl : Zk “
Lk
ÿ

l“1

ckl apθ
k
l qφ

H
k , c

k
l ą 0,apθkl qφ

H
k P Aku

(6)

where convpAq is the convex hull of A. To identify the
AoAs (which we used in our simulations) is by leveraging the
solution of the dual problem of (5) which is provided below:

min
V PCNˆT ,ZPCTˆT

2RexVΩ,YΩyF ` 2η}VΩ}F s.t.

„

I V H

V Zi



ľ 0, T ˚pZiq “ T ˚pIq, i “ 1, ...,K, PΩpV q “ 0

(7)

where pT ˚pZqqk “
řminpk`T,T q
i“maxp1,k`1qZi,i´k, k “ ´pT ´

1q, ..., pT ´ 1q is the adjoint operator of T . Then, we use
the following lemma (adapted from [20, Lemma 1] and [19,
Theorem 1]) which guarantees the uniqueness of the solution
in the noiseless case:

Lemma 1. Denote the set of AoAs from i-th users by Sia “
tθilu

Li

l“1. The solutions of Zk obtained from (5) in the noiseless
case (η “ 0) are unique if there exist dual matrices V P

CNˆT such that the vector-valued dual polynomials qipθq “
V Harpθq satisfy the conditions

qipθq “ φi,@θ P Sia, }qipθq}2 ă 1@θ P r0, πqzSia, i “ 1, ...,K.

This lemma shows that the AoAs can be easily estimated
by identifying locations where }qipθq}2 achieves 1. As stated

in [25], this provides a good insight about the procedure of
finding AoAs in the noisy case. Specifically, we find the AoAs
by identifying the ones that }qi}2 “ 1, i “ 1, ...,K.

After obtaining the estimated AOAs, a clustering-based
algorithm [26] is employed to detect the AOAs of each cluster
(active user) denoted by θk “ rθk1 , ..., θ

k
pLk
sT , k P pSu. Here,

pSu is the estimated set of indices corresponding to clusters
(estimated active users) with known length | pSu| “ Ka. By
knowing the AOAs corresponding to each cluster (estimated
active user), (3) turns into the following equation:

YΩ “
ÿ

kP pSu

Ak
Ωc

kφHk `WMˆT , (8)

where Ak
Ω “ PΩprarpθ

k
1 q, ...,apθ

k
pLk
qsq P CMˆKa is the

steering matrix of k-th active user and ck “ rck1 , ..., c
k
pLk
sT .

The task of recovering the unknown matrices ck and φk from
YΩ is a bi-linear inverse problem. For this task, we propose
an alternating optimization to jointly estimate complex channel
coefficients and transmitted data corresponding to active users.
First, we begin with a random pφk distributed on the unit
sphere. By replacing pφk in (8), we deal with the following
least square problem:

rpc1, ..., pcKas “ arg min
ck,k“1,...,Ka

}YΩ ´
ÿ

kPSu

Ak
Ωc

k
pφHk }F (9)

which can be easily solved by numerical optimization.
By integrating the latter expression into (8), we
must solve the following least square optimization:
pΦ “ arg minΦKaˆT

}YΩ ´BΦ}F , where B :“

rA1
Ωpc

1, ...,AKa

Ω pcKas P CMˆKa and Φ :“ rφ1, ...,φKas
T .

The latter optimization has also the closed-form solution

r pφ1, ..., pφKa
sT “ pΦ “ B:Y Ω. (10)

Finally, the steps (9) and (10) are alternatively performed
to yield the final solution. The pseudo code of the
proposed method which is indeed a summary of
the aforementioned steps is provided in Algorithm 1.
Algorithm 1

Require: Y P CMˆT ,η, Ka, maxiter
1: Select a uniformly distributed random vector for transmitted data as pφk “ 5randpT, 1q@ k “

1 to Ka

2: Atotal “ H

‚ Solve the dual problem (7) to obtain V as follows:
‚ Obtain the dual polynomial qipθq “ V Harpθq, i “ 1, ...,K.
‚ Localize the estimated angle pθ P r0, 1s by the following two methods:
‚ Discretize pθ on a fine grid up to a desired accuracy and find pθ and by identifying locations

where }qipθq}2, i “ 1, ...,K achieves to 1 according to Lemma 1. The total number of angles
reaching 1 specifies an estimate for the total number of MPCs i.e.

řKa

k“1 Lk

2:
3: Apply the k-means methods to cluster the angles of channel UEs.
4: rlabels “ k´meansppθ,Kaq

5: for k “ 1 to Ka do
6: Identify the corresponding indices with the k-th label.
7: Estimate the length of k-th cluster i.e. Lk.
8: Obtain the angles corresponding to the k-th cluster (UE) i.e. pθk1 , ..., pθ

k
Lk

9: Estimate the steering matrix as
10: Atotal Ð rAtotal,Aks

11: end for
12: for i “ 1 to maxiter do
13: Recover rpc1, ..., pcKas according to (9).
14: Recover r pφ1, ..., pφKas according to (10).
15: pφk Ð

pφk

} pφk}2
.

16: end for
Return: pθk, pαk, psk, @k P Su.

Discussion: Our algorithm provides a blind spatial-based
RA scheme which simultaneously estimates data as well
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as channels. The only assumption on the data to be
unambiguously recovered is positivity i.e. si ą 0 and
normalized power }si}2 “ 1 for all active users i “ 1, ...,Ka.
The proposed method has implications for data recovery
in mMTC as well as RAP and AOA detection in crowded
mobile broadband communications (cMBB). For example, CI
in cMBB divides into 2 parts: RAP and data transmission
blocks. By utilizing this novel approach in the RAP block,
AUD and AoA estimation are performed by the BS [3,
Section 5]. By our method, BS can identify many users at
the same time with their AoAs and with the lowest level of
spending system resources. In fact, the number of active users
that can access the network depends on the complexity that
BS can bear. There is no need for orthogonality of RA pilots
needed for RAP process in [4] and prior distribution of pilots
and channels as is the case in AMP-based approaches [6],
[15]. After RAP, in the coherent transmission step, BS can
easily allocate dedicated orthogonal pilots to non-overlapped
UEs and estimates their corresponding data via (10) by
knowing the exact AoAs of active users in the RAP stage.

IV. SIMULATIONS

In this section, we perform some numerical experiments to
evaluate the performance of our proposed algorithm in blind
channel and data reconstruction. We use SDPT3 package of
CVX [27] in MATLAB for solving problem (7). The number
of BS antennas is set to N “ 64. We assume the one-ring
model for the channel [28]. The AoAs are randomly chosen
from r0, πs. The path amplitudes are distributed as CN p0, 1q.
The separation between any receive antennas at BS are set
to ∆r “ 0.5. The observed sensors at BS (Ω) are randomly
chosen out of t1, ..., Nu. Also, the maximum number of
iterations in Algorithm 1 denoted by maxiter is fixed to 5. The
upper bound of noise variance is chosen as η “ }W }F . The
signal to noise ratio is defined by SNR “ 10 log10p

}PΩpXq}
2
F

MTσ2 q.
First, in the top-left image of Figure 1, we show the successful
procedure of AUE and clustering with parameters M “ 30,
K “ 10, Ka “ 3, T “ 2, SNR “ 10 dB. The maximum
number of MPCs is fixed to Lmax “ 3. This image shows
the `2 norm of the vector-valued dual polynomial at different
angles in terms of radian. The estimated angles are found
by identifying locations that }qpθqi}2 “ 1, i “ 1, ...,K.
The number of peaks provides an estimate for

ř

kPSu
Lk.

After finding the angles, we apply k-means method to cluster
the angles corresponding to Ka active users. The number
of elements inside each cluster provides an estimate for pLk.
Then, steps 12 to 16 of Algorithm 1 are employed to obtain
the pilots and channels. The performance of our algorithm
in recovering users’ data, channel amplitudes and AoAs is
evaluated using normalized mean square error (NMSE) respec-

tively defined by NMSEφ :“ E

c

řKa
k“1 }φk´ pφk}

2
2

řKa
k“1 }φk}

2
2

, NMSEα :“

E

c

řKa
k“1 }αk´ pαk}

2
2

řKa
k“1 }αk}

2
2

and NMSEθ :“ E

c

řKa
k“1 }θ

k´pθk}22
řKa

k“1 }θ
k}22

. The

Monte-Carlo iterations to approximate the expectation is set
to 50. The evaluation for the first experiment are as follows:
NMSEΦ “ 10´6,NMSEα “ 10´5,NMSEθ “ 10´8. In the
second experiment, we evaluate the performance of Algorithm

Fig. 1. Top-left image: This image depicts `2 norm of the dual polynomial
vector. One can find the angles of active users by identifying angles with
maximum amplitude. The angles of active user channels are clustered using
kmeans method. The used parameters are N “ 64,M “ 30,Ka “ 3,K “

10, T “ 2, SNR “ 10 dB. Top-right image: This image compares the
performance of our algorithm in CE with [3] for different number of BS
antennas with settings Lmax “ 4, T “ 10,Ka “ 3,K “ 10,SNR “ 3dB.
Bottom left image: The performance of AUE is compared with [12] versus
the number of observed arrays with parameters N “ 60,M “ 60,Ka “

5,K “ 50, Lmax “ 3,SNR “ 5 dB. Bottom right image: This image shows
the performance of our algorithm in estimating angles, pilots and complex
amplitudes with parameters N “ 64, Lmax “ 3,Ka “ 12,K “ 40, T “

10.

1 in different noise values in a more practical scenario with
parameters N “ 64, Lmax “ 3,Ka “ 12,K “ 40, T “ 10.
As it turns out from the bottom image of bottom-right image
of Figure 1, NMSEs tends to zero at high SNRs which in turn
implies that our proposed method performs well in estimating
users’ data, complex channel amplitudes and AoAs of active
users. In the experiment shown in the top-right image of Figure
1, we compare our method with [3] for different number of
antennas. For both methods, we obtain NMSE of the channel

matrix defined by NMSEh :“ E

c

řKa
k“1 }hk´phk}

2
2

řKa
k“1 }hk}

2
2

. As it can

be observed, our blind method performs better in CE than [3]
which assumes the users’ data known. In the last experiment,
the performance of AUE in our algorithm is compared with
[12, Algorithm 1] by a detection rate criterion defined as
DR “

|Su´xSu|

Ka
where the numerator returns the number of

differences between the true active users and the estimates. As
shown in the bottom-left image of Figure 1, the probability
of detection enhances by increasing the number N of BS
antennas.

V. CONCLUSION

In this work, we designed a novel blind spatial-based ran-
dom access solution which is applicable to crowded massive
MIMO systems. Specifically, we showed that the recovery
of both pilots and AoAs are possible via observing a few
noisy measurements in blind manner. For this task, we used a
clustering method to demix the AoAs corresponding to active
user and an alternating-based approach is designed to recover
the pilots and the complex amplitudes of the channels.
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