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Convergence rate comparison of proximal
algorithms for non-smooth convex optimization

with an application to texture segmentation
L. M. Briceño-Arias and N. Pustelnik, Member, IEEE

Abstract—In this paper we provide a theoretical and numerical
comparison of convergence rates of forward-backward, Douglas-
Rachford, and Peaceman-Rachford algorithms for minimizing
the sum of a convex proper lower semicontinuous function and a
strongly convex differentiable function with Lipschitz continuous
gradient. Our results extend the comparison made in [1], when
both functions are smooth, to the context where only one is
assumed differentiable. Optimal step-sizes and rates of the three
algorithms are compared theoretically and numerically in the
context of texture segmentation problem, obtaining very sharp
estimations and illustrating the high efficiency of Peaceman-
Rachford splitting.

Index Terms—Proximal algorithms, convex optimization, con-
vergence rates, texture segmentation.

I. INTRODUCTION

During the last twenty years, a huge number of algorithms
have been developed in order to perform signal/image anal-
ysis involving sparsity constraints. Most of these algorithms
belong to the class of proximal algorithms including forward-
backward iterations, Douglas-Rachford splitting, Alternating
Direction Method of Multipliers (ADMM), primal-dual prox-
imal schemes (see [2], [3], [4] and references therein).

The selection of an appropriate algorithm to minimize a
specific objective function is a tedious task and its choice
mainly depends on the properties of the involved functions
(differentiability, Lipschitz gradient, closed form expression
of the proximity operator) but also depends on the user
expertise for a class of specific algorithmic schemes. However,
a common practical rule is to consider a gradient activation
step when the function is differentiable with a Lipschitz
gradient and a proximal step when the function is not. Such
a choice has no theoretical roots as very few works propose
an exhaustive numerical comparison between proximal versus
gradient step activation in the context of the inverse problems
(see a contrario [1], [5]).

A fair comparison between numerical schemes relies on
convergence rate analysis requiring to study strongly convex
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objective functions, as encountered in specific tasks of data
processing such as signal/image denoising or texture seg-
mentation [6], [7]. A tight convergence rate integrates the
properties of the involved functions (strong convexity and
Lipschitz constants) and the step-size parameter. From this
general rate expression, we can derive the optimal step-size
and the associated optimal convergence rate. The benefit of
such a procedure is twofold as it allows us to identify the
best step-size parameter, which is often a tedious task when
done empirically, and it allows us to compare algorithm rates
without requiring to implement them.

In [1], a deep analysis of gradient descent, forward-
backward (FBS), Douglas-Rachford (DRS), and Peaceman-
Rachford (PRS) schemes was provided in the context of a sum
of two differentiable functions having Lipschitz gradient. In
this context, [1] provides a parallel comparison of convergence
rates of the method mentioned above recovering and improv-
ing some results in [8], [9], [10], [11], [12], [13], [14], [15].
It provided numerical experiments allowing us to compare
numerical and theoretical rates, highlighting the good behavior
of fully proximal activation schemes, especially of Peaceman-
Rachford scheme. However, the assumption of differentiability
on both functions is quite restrictive in applications, which
inspire us to extend our analysis to non-smooth objective
functions. In this context the question of how larger (worse) are
the convergence rates by removing the smoothness assumption
on one function naturally appears.
Contribution. The present work is an extension of our pre-
vious contribution in [1] when we relax a differentiability
assumption on one of the two functions. The convergence
rate and optimal step-size are provided in this context and
we observe that the convergence rates of FBS and PRS
remain unchanged while that of DRS is larger in general. The
theoretical bounds are compared to experimental ones in a
context of scale-free texture segmentation involving a strong
convex data-fidelity term.
Notation. Throughout this paper, H is a real Hilbert space
endowed with the inner product ⟨· | ·⟩ and associated norm
∥ · ∥ =

√
⟨· | ·⟩. We denote by Γ0(H) the class of functions

h : H → ]−∞,+∞] which are proper, lower semicontinuous
(l.s.c), and convex. For every L > 0, we consider the class
C 1,1
L (H) of functions h : H → R satisfying h is differentiable

in H and ∇h : H → H is L-Lipschitz continuous, i.e., for
every (x, y) ∈ H×H, ∥∇h(x)−∇h(y)∥ ≤ L∥x− y∥. Given
ρ > 0, h ∈ C 1,1

L (H) is ρ−strongly convex if h − ρ
2∥ · ∥22 is

convex. The proximity operator of h is defined by proxh : x 7→



2

argminy∈H
(
h(y) + 1

2∥y − x∥2
)
, which is well defined since,

for every x ∈ H, h(·) + ∥ · −x∥2/2 is strongly convex and,
hence, it admits a unique minimizer. Id and ◦ denote the the
identity operator and the composition operation, respectively.

II. OPTIMIZATION PROBLEM AND PROXIMAL SCHEMES

Through this work we consider the following convex opti-
mization problem.

Problem 1. Let f ∈ Γ0(H) and let g ∈ C 1,1
L (H) be

ρ−strongly convex for some L ∈ ]0,+∞[ and ρ ∈ ]0, L[.
The problem considered is to

minimize
x∈H

f(x) + g(x), (1)

under the assumption that solutions exist.

The algorithms we consider generate recursive sequences of
the form

(∀k ∈ N) xk+1 = Φxk,

where Φ: H → H is a suitable operator which incorporates
the proximity operator of f and proximity or gradient steps on
g and such that we can recover a solution to Problem 1 from
points in FixΦ =

{
x ∈ H

∣∣ x = Φx
}

. In this work we study
three algorithms for solving Problem 1: forward-backward,
Douglas-Rachford, and Peaceman-Rachford.

• Forward-backward splitting (FBS) – The Forward-
backward operator reads

Φ = Tτf,τg = proxτf ◦ (Id−τ∇g), (2)

for some τ > 0. This scheme alternates an explicit gradient
step and an implicit subgradient step. It follows from [2,
Proposition 26.1(iv)(a)] that

(∀τ > 0) argmin(f + g) = FixTτf,τg. (3)

This scheme is also known as the proximal gradient algorithm
(see, e.g., [16]).

• Peaceman-Rachford splitting (PRS) – The operator asso-
ciated to this scheme is

Φ = Rτf,τg = (2proxτf − Id) ◦ (2proxτg − Id), (4)

for some τ > 0. It follows from [2, Prop. 26.1(iii)(b)] that

(∀τ > 0) argmin(f + g) = proxτg(FixRτf,τg). (5)

• Douglas-Rachford splitting (DRS) – This scheme is
formulated as:

Φ = Sτf,τg = proxτf (2proxτg − Id) + Id−proxτg, (6)

for some τ > 0, which is the average between Id and Rτf,τg.
It follows from [2, Prop. 26.1(iii)(b)] that

(∀τ > 0) argmin(f + g) = proxτg(FixSτf,τg). (7)

There exists at least two ways to prove the convergence of
the sequence of (xk)k∈N to argmin(f + g) of such proximal
schemes.

A first approach is to consider operators Φ: H → H which
are r−Lipschitz continuous for some r ∈ [0, 1[, i.e.,

(∀x ∈ H)(∀y ∈ H) ∥Φx− Φy∥ ≤ r∥x− y∥, (8)

and then we prove the convergence of the generated sequence
following the Banach-Picard theorem stated below.

Theorem 1. [2, Theorem 1.50] Let r ∈ [0, 1[, let Φ: H → H
be a r−Lipschitz continuous operator, and let x0 ∈ H. Set

(∀k ∈ N) xk+1 = Φxk. (9)

Then, FixΦ = {x̂} for some x̂ ∈ H and we have

(∀k ∈ N) ∥xk − x̂∥ ≤ rk∥x0 − x̂∥. (10)

Moreover, (xk)k∈N converges strongly to x̂ with linear con-
vergence rate r.

The second way to prove convergence relies on the theory
of averaged nonexpansive operators [2, Theorem 5.23]. This
context of study benefit of less restrictive assumptions of f and
g to prove convergence, but at the price of weaker convergence
results. Indeed, the convergence of the sequence (xk)k∈N to
an element in Argmin(f +g) for FBS, DRS, and PRS is only
weak and convergence rates are sub-linear in general.

III. CONVERGENCE RATES

In the next result we provide the linear convergence rates
of FBS, DRS, and PRS in the context of Problem 1.

Proposition 1. Consider the context of Problem 1 and let
τ > 0. Then, the following statements hold:

1) Suppose that τ ∈
]
0, 2

L

[
. Then Tτf,τg is

rT (τ)−Lipschitz continuous, where

rT (τ) := max
{
|1− τρ|, |1− τL|

}
∈ ]0, 1[ . (11)

In particular, the minimum of the function rT defined in
(11) is achieved at

τ∗ =
2

ρ+ L
and rT (τ

∗) =
L− ρ

L+ ρ
. (12)

2) Rτg,τf and Rτf,τg are rR(τ)−Lipschitz continuous,
where

rR(τ) = max

{
1− τρ

1 + τρ
,
τL− 1

τL+ 1

}
∈ ]0, 1[ . (13)

In particular, the minimum of the function rR defined in
(13) is achieved at

τ∗ =

√
1

Lρ
and rR(τ

∗) =
1−

√
ρ
L

1 +
√

ρ
L

. (14)

3) Sτg,τf and Sτf,τg are rS(τ)−Lipschitz continuous,
where

rS(τ) =
1 + rR(τ)

2
∈ ]0, 1[ (15)

and rR is defined in (13). In particular, the minimum of
the function rS defined in (15) is achieved at

τ∗ =

√
1

Lρ
and rS(τ

∗) =
1 + rR(τ

∗)

2
. (16)



3

Proof. We give the proof in the Appendix.

These results allows us to identify the optimal rates for each
scheme and the optimal step-size, which is often a tedious
task in practice. A step-size τ ≈ 2/L is commonly used for
FBS while large values of τ are often used for DRS in order
to obtain a faster convergence. This is theoretically justified
with the optimal step-sizes obtained in (12) and (16) when ρ
is small, i.e., when the problem is close to loose the strong
convexity.

The optimal rates in (12), (14), and (16) permit the iden-
tification of the faster strategy by using the strong convexity
and the smoothness of the problem. In the next section, we
explore numerically the tightness of these optimal rates and we
compare them in the context of texture segmentation problem.

IV. APPLICATION TO TEXTURE SEGMENTATION

Texture descriptors – In this section we focus on segmenta-
tion of autosimilar (or fractal) textures characterized by their
local variance and local regularity. This model appears in a
wide class of imagery problems as motivated in [7]. We denote
z ∈ RN the texture under study and Lj,n the associated
multi-resolution coefficient at scale 2j and location n [18].
For instance, Lj,n can refer to the absolute value of a wavelet
coefficient or a wavelet leader coefficient. Following [18], [19]
the local variance (which is proportional to some ηn ∈ R) and
local regularity, modeled with the local Hölder exponent hn,
are related with Lj,n when it goes to fine scales as follows

Lj,n ≃ ηn2
jhn . (17)

Define h = (hn)n∈{1,...,N} and v = (log2 ηn)n∈{1,...,N}.

Data z (Unknown) Mask

Fig. 1. Piecewise homogeneous fractal texture generated according to [7,
Section 4] using mask (right).

Texture segmentation – In this work, we focus on a mini-
mization problem inspired by [7], where we essentially replace
the discrete horizontal/vertical finite difference filtering with a
wavelet transform. This modification leads to an optimization
problem satisfying the hypotheses of Problem 1, which keeps
the essence of the model in [7]. The problem is to

minimize
(v,h)∈RN×RN

1

2

j2∑
j=j1

∥v + jh− log2 Lj∥2Fro

+ χh∥Wh∥1 + χv∥Wv∥1, (18)

where ∥ · ∥Fro denotes the Frobenius norm, 1 ≤ j1 < j2
are integers, W ∈ RN×N models an orthonormal Haar-
wavelet transform, and χh, χv > 0 denote the regularization

parameters. In order to fit (18) in the context of Problem 1,
let us set{

g : (v,h) 7→ 1
2

∑j2
j=j1

∥v + jh− log2 Lj∥2Fro
f : (v,h) 7→ χh∥Wh∥1 + χv∥Wv∥1

and note that f ∈ Γ0(RN × RN ). Moreover, set Mm =∑j2
j=j1

jm for m ∈ {0, 1, 2}, 1 = (1, . . . , 1)⊤ ∈ Rj2−j1+1,
j = (j1, . . . , j2)

⊤ ∈ Rj2−j1+1, A =
[
1 j

]
,

L = λmax(A
∗A) =

(M0 +M2) +
√
(M0 −M2)2 + 4M2

1

2
,

and

ρ = λmin(A
∗A) =

(M0 +M2)−
√
(M0 −M2)2 + 4M2

1

2
.

After straightforward computations, we deduce that g is ρ-
strongly convex and differentiable with a L-Lipschitz gradient.
Note that Cauchy–Schwarz inequality yields M1 = 1⊤j <
∥1∥∥j∥ =

√
M0M2, which implies that ρ > 0. Moreover,

the proximity operator of g (provided in [7]) is, for every
(v,h) ∈ RN × RN , proxg(v,h) = (p, q), where p =

(1+M2)(
∑

j log2 Lj+v)−M1(
∑

j j log2 Lj+h)

(1+M0)(1+M2)−M2
1

,

q =
(1+M0)(

∑
j j log2 Lj+h)−M1(

∑
j log2 Lj+v)

(1+M0)(1+M2)−M2
1

,

and the proximity operator of f has the closed form expres-
sion:

proxf : (v,h) 7→
[
W−1proxχh∥·∥1

Wv

W−1proxχv∥·∥1
Wh

]
.

Theoretical comparisons – We apply the theoretical analysis
to the texture segmentation optimization problem defined in
(18). The optimal rates only depend on the regression scales
j1 and j2 and their values are summarized in Table I. By a
simple evaluation of the rate, we can identify that PRS is the
scheme with smallest convergence rate.

TABLE I
THEORETICAL OPTIMAL RATES FOR FBS, PRS, AND DRS.

FBS j1 = 1 j1 = 2 j1 = 3

j2 = 3 0.958 0.991 ND
j2 = 4 0.965 0.988 0.997
j2 = 5 0.972 0.988 0.996

PRS j1 = 1 j1 = 2 j1 = 3

j2 = 3 0.743 0.874 ND
j2 = 4 0.764 0.857 0.928
j2 = 5 0.786 0.856 0.911
DRS j1 = 1 j1 = 2 j1 = 3

j2 = 3 0.872 0.937 ND
j2 = 4 0.882 0.929 0.964
j2 = 5 0.893 0.928 0.956

V. EXPERIMENTAL VALIDATION

Generation of synthetic data – A piecewise homogeneous
fractal texture is generated according to [7, Section 4] using the
mask displayed in Fig. 1(b), with N = 256×256. The mask is
composed with two regions: i) a background (in black), with
variance and local regularity (0.6, 0.5), a central ellipse (in
white) of parameters (1.1, 0.9).
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Fig. 2. We compare the theoretical upper bound (i.e., rΦ(τ)k∥x0 − x∞∥2) versus the numerical error (i.e., ∥xk − x∞∥2) w.r.t. the number of iterations,
where rΦ(τ) stands for each of the theoretical linear rates defined in Proposition 1 when Φ ∈ {T,R, S}. We consider y-log scale for FBS, DRS and PRS
schemes for solving the segmentation problem over the range j ∈ {2, 3, 4}, χv = 0.1, and χh = 200.

Algorithmic rate comparisons for different regression
ranges – The first set of experiments displayed in Figure 3
provides a comparison between the theoretical and numer-
ical convergence rates for two different ranges (j1, j2) ∈
{(1, 3), (2, 4)}. The choice of (j1, j2) affects the strong con-
vexity constant and, hence, the theoretical convergence rate as
observed in Table I. As expected, we observe that the scale
of regression affects the segmentation results. Additionally,
we note that the numerical error fits quite well the theoretical
upper bound for the three algorithms under study, placing PRS
as the most efficient algorithm in this context. For instance,
when (j1, j2) = (1, 3), in order to achieve an accuracy of 1e-1,
PRS requires around 50 iterations, DRS around 120 iterations,
and FBS around 700 iterations.
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Fig. 3. Segmentation results and associated convergence behavior with FBS,
DRS, and PRS schemes considering y-log scale. (right) Range j ∈ {1, 2, 3},
χv = 0.1, and χh = 40. (left) Range j ∈ {2, 3, 4}, χv = 0.1, and χh =
200. (1st row) Results obtained from the minimization of (18). (2nd row)
Objective function (18) w.r.t the number of iterations. (3rd row) Theoretical
upper bound (i.e., rΦ(τ)k∥x0 − x∞∥2) versus numerical error (i.e., ∥xk −
x∞∥2) w.r.t number of iterations, where rΦ(τ) denote the theoretical linear
convergence rates defined in Proposition 1 with Φ ∈ {T,R, S}.

Optimal versus not optimal rate – In Figure 2, we display the
convergence behavior for each scheme FBS, PRS, and DRS
for optimal τ∗ and non-optimal step-sizes. We can observe
that the rate is very tight for the optimal step-size and looses

the tightness as the step-size deviates from the optimal value.
The optimal step-size according to the theory always leads to
the fastest numerical scheme.

VI. CONCLUSION

This work provides accurate convergence rate for FBS,
DRS, and PRS for minimizing the sum of a proper l.s.c.
convex function and a strongly convex differentiable function
with Lipschitz gradient. The proposed results allows us to
evaluate the optimal step-size for each scheme based on the
constant of the strong convexity and Lipschitz constant of
the gradient. We validate the theoretical results on a texture
segmentation problem relying on fractal analysis. Peaceman-
Rachford appears to be the faster scheme for this specific study
case of texture segmentation.

APPENDIX

Prop. 1(1): We provide a simpler and shorter proof of the
result in [17, Theorem 2.1], which is a contribution by itself.
Since g ∈ C 1,1

L (H) is ρ-strongly convex, we have that ϕ =
g − ρ∥ · ∥2/2 is convex and differentiable. Hence, it follows
from [2, Proposition 18.15] that, for every x and y in H,

⟨x−y |∇ϕ(x)−∇ϕ(y)⟩=⟨x−y |∇g(x)−∇g(y)⟩−ρ∥x− y∥2

≤ (L− ρ)∥x− y∥2,

which yields ϕ ∈ C 1,1
L−ρ(H). In addition, by setting Gτg =

Id−τ∇g, we have Tτf,τg = proxτf ◦Gτg and

Gτg = Id−τ(∇ϕ+ ρ Id) = (1− τρ) Id−τ∇ϕ. (19)

Now let τ ∈ ]0, 2/L], let x and y in H, and set p = Tτf,τgx
and q = Tτf,τgy. Since ϕ ∈ C 1,1

L−ρ(H) is convex, it follows
from [2, Proposition 12.28], (19), and [2, Proposition 18.15]
that

∥p− q∥2 ≤ ∥Gτgx−Gτgy∥2

= (1− τρ)2∥x− y∥2 + τ2∥∇ϕ(x)−∇ϕ(y)∥2

− 2τ(1− τρ)⟨x− y | ∇ϕ(x)−∇ϕ(y)⟩
≤ (1− τρ)2∥x− y∥2

+ τ
(
τ(L+ ρ)− 2

)
⟨x− y | ∇ϕ(x)−∇ϕ(y)⟩

≤ (1− τρ)2∥x− y∥2=∥x− y∥2 max{(1−τρ)2, (1−τL)2}

and the result follows. Prop. 1(2)&(3): Both results are a
consequence of [8, Theorem 2]. In all the cases, the minimum
is obtained via simple computations.
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