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Against Speech-to-Text Adversarial Attacks
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Abstract—This paper introduces a new synthesis-based defense
algorithm for counteracting with a varieties of adversarial attacks
developed for challenging the performance of the cutting-edge
speech-to-text transcription systems. Our algorithm implements
a Sobolev-based GAN and proposes a novel regularizer for effec-
tively controlling over the functionality of the entire generative
model, particularly the discriminator network during training.
Our achieved results upon carrying out numerous experiments on
the victim DeepSpeech, Kaldi, and Lingvo speech transcription
systems corroborate the remarkable performance of our defense
approach against a comprehensive range of targeted and non-
targeted adversarial attacks.

Index Terms—Speech adversarial attack, adversarial defense,
Sobolev Integral probability metric, GAN, regularization.

I. INTRODUCTION

Over the last decade, a remarkable progress has been made

in developing real-time speech-to-text transcription systems

particularly after the proliferation of deep learning algorithms.

Nowadays, such systems employ variants of complex config-

urations such as long short-term memory, residual, and trans-

former architectures [1] for improving transcription accuracy

under severe noisy environments. DeepSpeech [2], Kaldi [3],

and Lingvo [4] are among those advanced systems to name

a few. However, it has been demonstrated that they are ex-

tremely vulnerable against carefully crafted adversarial signals

which carry imperceptible perturbations (δ) that redirect the

recognition models towards transcribing incorrect phrases [5].

Technically, an adversarial signal ~xadv can be defined as [6]:

~xadv ← ~xorg + δ (1)

where ~xorg denotes the original signal. For achieving an

optimal value for δ, often a costly optimization formulation is

required since the difference between ~xadv and ~xorg should be

inaudible. Toward satisfying this condition, many optimization

algorithms have been developed thus far. However, the major-

ity of them implement a sort of convex formulation most likely

inspired by Carlini et al. [6] as the following (C&W attack).

(2)
min
δ
‖δ‖F +

∑

i

ciL(~xadv, ŷi)

s.t. ldB(~xadv) < ǫ and ŷi 6= yi

M. Esmaeilpour, and P. Cardinal are with École de Technologie Supérieure
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where ci and L(·) refer to adjusting coefficient (scalar) and the

loss function for the victim transcription model, respectively.

Additionally, yi and ŷi denote the original and adversarial

phrases in which the latter should be defined by adversary.

Furthermore, ldB(·) is a dB-scale loudness metric for mea-

suring the distortion of ~xadv relative to ~xorg. Finally, ǫ is

a subjective threshold for the adversarial perturbation which

should be carefully tuned according to the properties of the

transcription model, environment, and the characteristics of the

original input signals (e.g., the number of channels).

Unfortunately, adversarial signals pose major security con-

cerns for speech transcription systems in two aspects. Firstly,

they can significantly reduce the recognition accuracy and

generalizability of such systems [7]. Secondly, they are trans-

ferable from a model to another [8]. For instance, an adver-

sarial signal which is crafted for Kaldi, most likely fools other

systems such as DeepSpeech and Lingo [9], [10]. Motivated

by these two raised concerns, we develop a novel defense algo-

rithm for counteracting with varieties of white and black-box

adversarial attacks. Technically, our approach belongs to the

synthesis-based defense category using generative adversarial

network (GAN) [11]. Briefly, this category includes defense

algorithms which synthesize a new signal acoustically very

similar to the given input speech (~xin) aiming at bypassing

the potential adversarial perturbation on ~xin. This is one of the

reliable approaches for protecting recognition models [12]. In

summary we make the following contributions in this paper:

(i) Developing a novel regularizer for the integral probability

metric of the defense GAN in the restricted Sobolev space

[13], [14]; (ii) Incorporating the room-impulse-response (RIR)

effect into the regularization formulation to enhance the quality

of the synthetic signals; (iii) Optimizing the functionality of

the discriminator network in a GAN setup for significantly

reducing the number of required gradient computations. The

rest of our paper is organized as the following. Section II

provides a brief review over the state-of-the-art attack and

defense algorithms. In Section III, we introduce our defense

approach and explain its functionality. Finally, we summarize

all the experimental results in Section IV.

II. BACKGROUND: ATTACK AND DEFENSE

Over the last years, many variants have been introduced for

Eq. 2 both in the context of targeted and non-targeted as well

as white and black-box adversarial attacks (more information

about these taxonomies are available at [15]). For instance,

Yakura et al. [16] demonstrated that adversarial perturbation

http://arxiv.org/abs/2207.06858v2
https://github.com/EsmaeilpourMohammad/RSD-GAN.git.
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fades away upon replaying ~xadv over the air. For tackling this

issue, they proposed an expectation over transformation (EOT)

operation and slightly updated Eq. 2 as follows:

min
δ

Et∈τ,ω∼N (0,σ2) [L(mfcc(~xadv), ŷi) + αt ‖δ‖] (3)

where t and τ denote an independent variable and EOT filter

set, respectively. Additionally, ω represents the white Gaussian

noise operator driven from the RIR simulation [17] where ~xorg

is recorded. Such an operator is essential in optimizing for

δ since it contributes to smoothly (i.e., in an imperceivable

manner) contaminate the original input signal with the ad-

versarial perturbation. In Eq. 3, mfcc is the Mel-frequency

cepstral coefficient transform [16], [18] for converting ~xadv

into a feature representation. Finally, αk refers to the scaling

parameter for adjusting the magnitude of δ in conjunction with

the probability density function of τ .

A more simplified yet effective version for Eq. 3 is called

the robust attack and it has been introduced by Qin et al. [19].

This attack replaces the costly ω operation with a mask loss

function for encoding δ beyond the human audible range.

However, it does not incorporate the properties of microphone-

speaker (SM) settings during its optimization procedure. It

has been experimentally demonstrated that such settings ef-

fectively enhance the robustness of δ after consecutive play-

backs over the air [5]. Presumably, based on the concept of

SM simulation, the Imperio [5] and Metamorph [20] attack

algorithms have been developed. The latter attack also sim-

ulates the channel impulse response (CIR) for achieving a

less likely detectable adversarial perturbation upon running

potential defense algorithms. However, CIR implementation

is computationally expensive and requires running numerous

exploratory experiments to tune its hyperparameters. To tackle

this issue, Esmaeilpour et al. [21] introduced a novel at-

tack formulation based on Cramér integral probability metric

(CIPM). Furthermore, their attack does not exploit any EOT

operation during optimizing for δ and it converges relatively

faster than other aforementioned algorithms.

All the above-mentioned adversarial attack approaches have

been widely experimented and analyzed on the DeepSpeech

(Mozilla’s implementation), Lingvo, and Kaldi. Unfortunately,

it has been evidently revealed that such cutting-edge systems

are extremely vulnerable against almost all variants of speech

attacks [6], [22], [23]. In response to this critical concern, a

number of defense algorithms have been developed which we

briefly review them in the following.

Multi-rate compression algorithm (MRCA) [24] is one of

the baseline defense approaches which has been extensively

used for benchmarking the resiliency of adversarial attacks

under different noisy environments. The intuition behind this

approach is straightforward. In a nutshell, MRCA compresses

the input signal through high-frequency components modula-

tion aiming at fading out the potential adversarial perturbation

on ~xadv. Although MRCA is computationally very efficient, it

fails to detect adversarial signals which have been carefully

optimized through CIR-based algorithms [25]. For tackling

this challenge, two affirmative resolutions have been devised:

(i) augmenting the transcription models with some simulated

psychoacoustic filters which is known as the Dompteur defense

[26], and (ii) developing an autoencoding GAN (A-GAN) [27]

for synthesizing new mfcc features for every input signal (~xin).

Relatively, the latter defense approach enables reconstructing

higher quality speech samples without recovering potential

δ. However, it has been shown that A-GAN suffers from

extreme instability and mode collapse issues particularly for

long speech signals (> 5.6 seconds) [23].

Towards developing stable GANs for effectively protecting

speech transcription systems, a varieties of approaches have

been presented heretofore. For instance, the class-conditional

defense GAN (CCD-GAN) [28] proposes a novel regulariza-

tion technique as:

argmin
zi
‖γ [G(zi),xorg]‖

2
2 and zi ∈ R

dz (4)

where dz refers to the dimension of zi and xorg denotes the

spectrogram (frequency components plot) [29] associated with

~xorg. Additionally, G(·) indicates the generator network in the

GAN configuration and γ [·] refers to the chordal distance

adjustment operator [13], [30]. Eq. 4 iteratively maps G(zi)
onto the subspace of xorg for ensuring that the projected signal

does not carry any malicious perturbation (i.e., δ).

In order to make Eq. 4 more compatible with other defense

GAN platforms such as the complex cycle-consistent configu-

rations, a convex quadratic regularizer has been introduced as

[28]:

argmin
z2,i

∥
∥G1(z

c
1,i)− G2(z2,i)

∥
∥
2

2
and z1,i, z2,i ∈ R

dz (5)

where G1(·) and G2(·) represent two generator networks bun-

dled together sequentially. This regularization technique has

been exploited in the cyclic defense GAN (CD-GAN) [28]

platform and the achieved results corroborate that not only

Eq. 5 improves the stability of the entire generative model,

but also it effectively enhances the chance of synthesizing δ-

free speech signals.

Designing a GAN architecture with multiple discriminator

networks is another efficacious approach for improving the sta-

bility of Gi(·). On one hand, this design contributes to provide

more informative gradients to the generators and consequently

enhances the performance of the defense algorithm in runtime

[23], [31]. On the other hand, such a design adds compu-

tational overhead to the training procedure of the generative

model. Presumably, one potential resolution is defining the

regularization term (e.g. Eq. 5) in a non-Cartesian vector space

[13], [32]. Following this perspective, Esmaeilpour et al. [10]

developed a multi-discriminator GAN in the restricted Sobolev

space [33]. This defense algorithm is known as SD-GAN and

it has been successfully evaluated for varieties of targeted

and non-targeted adversarial attacks. However, it has been

experimentally demonstrated that SD-GAN negatively affects

the quality of the synthesized speech signals. In response, we

develop a novel GAN-based defense algorithm which makes

a better trade-off between protecting the transcription system

against adversarial attacks and preserving the signal quality.

III. REGULARIZED SOBOLEV DEFENSE GAN: RSD-GAN

Typically, a GAN configuration consists of two deep neural

networks, namely a generator and a discriminator denoted by
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G(·) and D(·), respectively [11]. The first network enquires a

random vector zi and synthesizes a new signal ~xsyn,i as [11]:

G(zi) 7→ ~xsyn,i s.t. ~xsyn,i
∼= ~xorg,i and pg ≈ po (6)

where pg and po represent the probability distribution of the

generator and the original training signals, respectively. In

order to derive a comprehensive pg for a given training set,

the discriminator network should provide gradient information

to G(·) in every iteration. Toward this end, a metric should be

employed to measure the discrepancy between the original and

synthetic signals. The choice of such a metric (which is also

known as an integral probability metric - IPM [33]) is critical

since it directly affects the learning curve of the generator

network during training [34]. Technically, an IPM measures

the divergence between two probability distributions using a

critic function f(·) as follows [35]:

sup
f∈F

[
EG(zi)∼pg

f(G(zi))− E~xorg∼po
f(~xorg)

]
(7)

where f(·) is parametric and semidefinite [36]. Additionally,

F is an independent function class defined in a non-Cartesian

subspace. Basically, the interpretation of Eq. 7 in the context

of training a GAN is finding a nonlinear critic function which

asymptotically estimates the discrepancy between original and

synthetic signals according to the constraints imposed by F .

Theoretically, there exist numerous function classes for Eq. 7

but only a limited number of those are practically integrable as

an IPM into a generative model framework [14]. Some notable

IPMs which have been successfully implemented for training

different types of GANs are ϕ-divergence [11] (used in the

vanilla-GAN [11]), Stein [37], Wasserstein [38] (for improving

the stability and scalability of the generator networks), Cramér

[39], µ-Fisher [34], and Sobolev [14]. Recently, the latter IPM

has received more attention in the domain of speech synthesis

using GANs since it is relatively more consistent with the

latest architectures of the advanced speech-to-text transcription

systems (e.g., DeepSpeech) [10]. Such architectures employ a

standard transformation layer known as the mfcc production

which converts a single or multichannel input signal into a

feature representation using Fourier transform. This transform

is associated with the second degree function class defined in

the Sobolev space (FS) [14]. The formal definition for FS is

as the following [33].

Sϑ,2(X )
︸ ︷︷ ︸

FS

=

{

f : X → R
dz ,

∫

X

‖∇xf(x)‖
2
µ(x)dx

}

(8)

where X is an open subset of speech signal collection and ϑ
indicates the degree of the function class. Additionally, µ(·) ∝
po+pg and it denotes a dominant probability density function

[33]. From the statistical and algebraic standpoints, FS can be

also defined as the following [13], [33]:

FS
∼=

∑

αϑ

∣
∣
∣f̃(x)

∣
∣
∣

2

and mfcc(~x) 7→ x (9)

where f̃(·) denotes a set of Fourier coefficients (i.e., frequency

components) and αϑ is set to be a nonzero scalar. Hence, due

to the correlation between FS and the mfcc feature vectors,

substituting Eq. 8 into Eq. 7 most likely contributes to extract

more informative gradients to the benefit of both G(·) and

D(·) [10]. The final outcome of this substitution is yielding

the Sobolev-IPM (SIPM) with zero-boundary condition.

In practice, implementing the SIPM for training a GAN

might be extremely challenging since to the best of our knowl-

edge, there is no analytical upperbound limit for the integral

term in Eq. 8 [13]. This increases the degree of nonlinearity

for the critic function and results in delaying the convergence

of the discriminator network during training [10]. To address

this issue, we propose a strict regularization term defined in

the vector decomposition space [13] for f(·) partially aiming

at offloading D(·) from excessive computational overhead.

Proposition: Assuming λ∇ and λf represent the eigenvalue

tensors for ∇f(x) and the critic function as defined in Eq. 8,

respectively. Then, we can find a non-zero parametric function

Θ in such a way that:

min
λf

|λf − λ∇| ≤ η ·Θ ‖λf‖F (10)

Proof: Assuming η ∈ R
dz

+ and Θ−1 (λf − λ∇I) Θ is quasi-

invertible. Then, according to the Bauer-Fike theorem [13] we

can write:
∑

|λf − λ∇| 6 ‖λf I −Θ‖−1
F

6 η ·Θ ‖λf‖F (11)

where both λf and Θ are in the closed-form. �

The intuition behind developing Eq. 10 in an orthonormal

Schur decomposition subspace is the possibility of constrain-

ing the critic function f(·) relative to an achievable upper-

bound (supremum). More specifically, our proposed regular-

izer binds the SIPM into a semidefinite region surrounded

by this supremum value. Thus, we can have a tighter control

over the nonlinearity of f(·) and train a more comprehensive

yet stable GAN. However, the performance of our regularizer

is highly dependent to accurately derive and maintaining Θ.

Toward this end, we define:

Θ := FT (Θ̂), Θ̂
.
=

{

θ̂i,j | θ̂i,j ∼ N (0, pτr)
}

(12)

where FT (·) represents the short-term Fourier transform [40]

for complying with the nature of mfcc features. Moreover,

pτr denotes the probability distribution of the simulated RIR

filter sets [16] as briefly mentioned in Section II. Employing

such a distribution in modeling Θ enables us to incorporate the

spectral features of the environmental settings into the regular-

ization term of the critic function and potentially counteract

with losing the quality of the speech signals upon running

the defense GAN. In other words, substituting Eq. 12 into

Eq. 10 integrates some SM properties into FS and forces the

generator network to learn them. Eventually, this operation

contributes to synthesize a naturally-sounding signal according

to the characteristics of the environmental settings. In the

following section, we provide a summary of our conducted

experiments and analyze the performance of our proposed

RSD-GAN relative to other defense approaches.

IV. EXPERIMENTS

Our benchmarking datasets for training the RSD-GAN are

the Mozilla Common Voice (MCV [42]) and LibriSpeech
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TABLE I
PERFORMANCE COMPARISON OF DEFENSE ALGORITHMS AGAINST A COMPREHENSIVE SET OF TARGETED, NON-TARGETED, WHITE, AND BLACK-BOX

ADVERSARIAL SIGNALS. ALL THE STATISTICS ARE AVERAGED OVER 10 TIMES EXPERIMENT REPETITIONS. OUTPERFORMING RESULTS ARE IN BOLD.

Defense
Iteration (×12, 500) Modes (×16.5) GC (per batch) WER (%) SLA (%) segSNR STOI

DPS KLD LGV DPS KLD LGV DPS KLD LGV DPS KLD LGV DPS KLD LGV DPS KLD LGV DPS KLD LGV

MRCA − − − − − − − − − 29.01 28.78 25.31 56.67 58.42 54.67 16.09 16.24 17.88 0.74 0.75 0.76
Dompteur − − − − − − − − − 18.29 16.25 17.42 61.91 63.23 59.70 18.35 18.16 19.92 0.77 0.79 0.79
A-GAN 0.71 0.62 0.57 1.19 1.14 1.07 619 945 877 24.77 21.62 23.81 65.19 70.01 61.16 22.49 19.72 21.84 0.81 0.83 0.78

CCD-GAN 1.76 1.28 1.42 2.98 1.49 2.36 433 709 612 09.33 08.56 07.32 68.41 70.89 64.73 22.76 22.05 24.39 0.88 0.89 0.80
CD-GAN 1.87 1.66 1.59 2.91 2.77 3.01 512 665 564 08.91 08.11 07.10 71.07 73.52 71.12 25.17 24.78 23.67 0.87 0.88 0.81
SD-GAN 2.04 1.79 1.34 3.85 3.53 3.29 451 562 431 08.22 07.53 04.18 71.39 74.45 69.97 26.34 25.22 25.51 0.89 0.90 0.82

RSD-GAN 2.89 2.23 2.96 4.18 4.77 4.15 211 171 189 06.11 08.08 04.91 75.88 76.60 70.51 34.12 35.68 34.81 0.96 0.97 0.93

Average computational complexity comparison for defense algorithms (in metric seconds) per ensemble batch size of 512 during training [41]: A-GAN: 1.17, CCD-GAN: 1.02, CD-GAN: 1.06, SD-GAN:1.03, and RSD-GAN: 0.72.

Recall: DPS: DeepSpeech | KLD: Kaldi | LGV: Lingvo | Modes: this is averaged over all the batches [41] | GC: this is computed for the discriminator network with static batch size [41].

[43] which both include above thousands hours of speech

signals distributed over diverse utterances. Following a very

common practice in the domain of speech adversarial attack

and defense experimentation [6], [16], [19], [28], we also run

all the algorithms on a portion of the aforementioned datasets.

Therefore, we randomly select 35,000 samples separately from

MCV and LibriSpeech collections. We dedicate 30% of such

signals for crafting ~xadv using different attack algorithms and

keep the rest for training the defense approaches.

The architecture which we design for our RSD-GAN is

somewhat similar to the CCD-GAN, however without employ-

ing the class-conditional platform. For the generator network,

we implement four consecutive residual blocks with 4×4×16
channels followed by two 16 → 4 → 1 non-local layers. All

these hidden layers are accompanied by weight normalization,

orthogonal initialization [44], and tanh activation function.

For the discriminator network, we implement two stacked

residual blocks with 4 × 4 × 2 channels and two 3 × 3 × 1
convolutional layers. Finally, there is one linear logit layer

(→ 1) prior to a softmax function. This network employs

the SIPM with our proposed regularization term (i.e., Eq. 10)

for measuring the discrepancy between pg and po. Toward

deriving a comprehensive Θ for Eq. 12, we follow the protocol

explained in [16], [45] and use their predefined filter sets.

For targeted attacks, namely C&W, Yakura’s, the robust at-

tack, Imperio, Metamorph, and the CIPM attack, we randomly

assign 15 incorrect phrases to ŷi (with various lengths) and run

their associated optimization algorithms (e.g., Eq. 2). Upon the

convergence of these attacks, we achieve 15 adversarial signals

for every given ~xorg. Since we cannot manually assign such

incorrect phrases to non-targeted and black-box attacks (e.g.,

the multi-objective optimization attack (MOOA) [46] and the

genetic algorithm attack (GAA) [47]), we run each of these

algorithms 15 times to craft a collection of different adversarial

signals.

In order to evaluate the performance of the defense algo-

rithms against the aforementioned adversarial signals, we mea-

sure three categories of statistical metrics. The first category

includes three estimators for the accountability of the GANs.

More specifically, we compute the total number of iterations

for the generator network prior to collapse, the number of

learned modes in every batch with the static size of 512, and

the rounds of required gradient computations (GC) according

to the pipeline characterized in [41]. Technically, larger values

for the first two estimators interpret as the higher stability of

the generative model in runtime. However, GC indicates the

computational load on the discriminator network and ideally

it should be minimized.

The second category contains the conventional yet effective

word error rate (WER) and sentence-level accuracy (SLA)

metrics as defined in the following [10], [19]:

WER = (Ŝ+Î+D̂)/nŷi
×100 | SLA = nct/ntas×100 (13)

where Ŝ, Î , and D̂ denote the number of phrase substitution,

insertion, and deletion, respectively. Moreover, nŷi
indicates

the total number of predefined adversarial phrases. Regarding

the SLA’s mechanism, nct and ntas stand for the number of

correctly transcribed signals and the total number of adversar-

ial signals crafted for each victim model (e.g. DeepSpeech),

respectively. Finally, the third category accommodates rigor-

ous signal quality metrics, namely segmental signal-to-noise

ratio (segSNR) [48] and the short-term objective intelligibility

(STOI) [49]. We employ such estimators to assess the level of

distortions imposed on the signals upon passing them through

the defense algorithms. By definition, both segSNR and STOI

metrics yield higher values for more reliable defense algo-

rithms. Table I summarizes our achieved results on the above-

mentioned evaluation categories. As shown, our RSD-GAN

dominantly outperforms other defense algorithms in terms of

generative model accountability. This implies that not only our

proposed regularizer (i.e., Eq. 10) can significantly increase the

number of learned modes for G(·) and keep the model stable

up to above 20,000 iterations, but also it remarkably decreases

the number of gradient computations for D(·). Additionally,

for almost half of the cases the RSD-GAN competitively

surpasses other dense approaches with reference to the WER

and SLA metrics. Finally, the achieved results for the signal

quality metrics corroborates the effectiveness of our novel RIR

encoding technique (i.e., Eq. 12) into the SIPM formulation. In

other words, the RSD-GAN makes a better trade-off between

protecting speech transcription systems against adversarial

attacks and preserving the quality of the synthetic signals.

V. CONCLUSION

In this paper, we introduced a novel defense approach for

protecting some advanced speech-to-text transcription systems.

Our algorithm is based on synthesizing a new signal acous-

tically very similar to the given malicious input aiming at

bypassing the potential adversarial perturbation. Toward this

end, we developed a non-conditional GAN architecture and

imposed a solid regularization on the discriminator network

for improving accuracy, maintaining stability, and reducing the

computational complexity of the entire model. However, we

noticed that the performance of our RSD-GAN considerably

drops for really long multispeaker signals. We are strictly

determined to address this issue in our future works.
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