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One or Two Ridges? An Exact Mode Separation
Condition for the Gabor Transform

Sylvain Meignen, Nils Laurent and Thomas Oberlin

Abstract—In this paper, we investigate the conditions for the
separation of two pure tones from the spectrogram computed
with a Gaussian window. For this purpose, we put forward
necessary and sufficient conditions for the existence of spectro-
gram ridges associated with each signal. We then show how this
condition easily extends to the case of parallel linear chirps, i.e.,
signals with constant amplitude, linear instantaneous frequency,
and same chirp rate.

Index Terms—Time-frequency analysis, short-time Fourier
transform, spectrogram ridges.

I. INTRODUCTION

Analyzing the frequency content of a signal is of paramount
importance in many applications, which explains why spectral
analysis has become a major theory in signal processing.
When these frequencies vary with time, one needs to analyze
the signal jointly in time and frequency, hence the term
time-frequency analysis [1]. The short-time Fourier or Gabor
transform [2] is the simplest way of doing it, by applying a
sliding (Gaussian) window. But many other linear or quadratic
time-frequency representations (TFRs) have been proposed in
the literature, such as the Wigner-Ville [3], the wavelet [4] or
chirplet [5] transforms.

A very important aspect is the estimation of the instan-
taneous frequencies (IFs) of the modes making up a multi-
component signal. Indeed, in many applications, practitioners
are interested in estimating these modes and their IFs. Exam-
ples include mechanical engineering and monitoring [6], [7],
seismic signal analysis [8], [9] or oceanography [10]. TFRs
enable such an estimation, since the modes are known to
draw so-called ridges located around the IFs [11]. To estimate
these ridges, various methods have been developed in the
past decades, such as [12], [13] or [14]. Once the ridges are
detected, each mode can be reconstructed by various means: a
direct estimation from the values on the ridge [11], a local ver-
tical integration such as in the synchrosqueezed transform [15]
or a 2D integration in a well-chosen neighborhood [16], [17].
Other methods in the literature start by decomposing the signal
into its oscillating modes, and then applies the method of the
analytic signal to estimate the instantaneous frequencies, such
as the well-known Empirical Mode Decomposition (EMD)
[18].
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Some of these techniques are supported by a nice theory,
that give estimates of the expected transform based on first-
[15] or second-order expansions of the phase [11], [19]. But
they also require the modes to be well-separated in the time-
frequency plane, which is a strong condition. The aim of this
letter is to investigate this question for the Gabor transform.
More precisely, we present a new result that characterizes
when a sum of two pure tones leads to two ridges in the
Gabor spectrogram. This result is the counterpart of what
was already done in [20] for EMD and [21] for the wavelet
synchrosqueezed transform. Additionally, we extend our result
to the case of a sum of linear chirps with the same chirp-rate
(i.e., IFs draw parallel lines in the TF plane).

We believe this new result to be of interest in several
situations. Firstly, we will see that the result will help to
characterize the appearance of some interference patterns,
called time-frequency bubbles, following the denomination
of [22]. Characterizing these patterns could help to adapt
the window or wavelet width in adaptive TFRs [23] to im-
prove mode separation. Secondly, several works have recently
tackled the separation of interfering modes using the chirplet
transform [24], [25], and we will explain in what way our
result is complementary to these works.

The letter is organized as follows. The results are stated in
Section II for pure tones, and III for linear chirps. We discuss
these results and their potential impact in the concluding
Section IV, while the proofs of the main results are gathered
in the Appendix.

II. PURE TONES SEPARATION FROM THE SPECTROGRAM

Let us first define some notation that is used throughout
the paper. For f ∈ L1(R) ∩ L2(R) and a real window h ∈
L1(R) ∩ L2(R), the modified STFT of f is defined as:

V hf (t, η) =

∫
R
f(τ)h(τ − t)e−2iπ(τ−t)ηdτ. (1)

Thanks to a well localized sliding window, the spectrogram
|V hf (t, η)|2 estimates the spectral energy at a given time and
frequency. A pure harmonic of the form Aei2πξt is known
to create a stripe in the spectrogram, centered around a ridge
located at frequency η = ξ. In the case of a signal made of
several harmonics, numerous techniques have been proposed
to identify those ridges, in order to separate the modes making
up the signal [4], [11], [26]. Yet, such approaches are efficient
only when the modes do not interfere, which is not always
the case in practice. In this section, we give a necessary and
sufficient condition at which two pure waves create exactly
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Fig. 1: (a): spectrogram of two parallel pure harmonic modes with the same amplitude, when there exists a chain of LMFs
associated with each mode (A = 1, ξ1 = 230, and ξ2 = 260); (b): spectrogram of the same signal as in (a) when the
computation of ridges associated with each mode is no longer feasible; (c): same as (a) but when two parallel linear chirp
are considered (A = 1, φ1(t) = 230t + 100t2, φ2(t) = 260t + 100t2). (d): spectrogram of the same signal as in (c) when
the computation of ridges associated with each mode is no longer feasible. In each case, we also plot the zeros and the local
maxima of the spectrogram.

two separated ridges, meaning that we are able to identify and
separate them.

To this end, let us mathematically define the ridges as a
chain of local maxima of the spectrogram along the frequency
axis (LMFs). Such two chains can be constructed only if the
spectrogram has three extrema along the frequency axis at any
time t (two maxima and one minimum), and we investigate
in which circumstances this is the case. In our mathematical
analysis, we consider the case of the Gaussian window h(t) =

e−π
t2

σ2 (though different normalizations are possible), and the
extension to other types of windows is not in the scope of the
present paper. Our main result is the following.

Proposition II.1. Let f(t) = f1(t) + f2(t) with f1(t) =
Aei2πξ1t and f2(t) = ei2πξ2t, where ξ1 < ξ2 and A > 0.
Modes f1 and f2 are associated with two chains of LMFs if
and only if

α :=

√
π

2
σ(ξ2 − ξ1) > 1 and

| log(A)| < −2 arcosh(α) + 2α
√
α2 − 1.

(2)

The proof is detailed in Appendix A. Recalling that the
spectrogram of f reads:

|V hf (t, η)|2 = σ2
[
A2e−2πσ

2(η−ξ1)2 + e−2πσ
2(η−ξ2)2 (3)

+ 2Ae−πσ
2[(η−ξ1)2+(η−ξ2)2] cos(2π(ξ2 − ξ1)t)

]
,

one remarks that |V hf (., η)|2, where . means we consider this
variable, attains its maximum at tk = k

ξ2−ξ1 , k ∈ Z, at which

|V hf (tk, η)|2 = σ2(Ae−πσ
2(η−ξ1)2 + e−πσ

2(η−ξ2))2. (4)

One can then show that the conditions for the existence of
two LMFs at tk, are the same as condition (2) (see Appendix
B), meaning the result of Proposition II.1 is driven by what
happens at time tk.

To illustrate the different situations just put forward, we
consider the spectrogram of the sum of two pure tones with
A = 1 in Fig. 1 (a) and Fig. 1 (b). In the former, the conditions
(2) are fulfilled, and the two ridges can be easily detected,

while, in the latter, the spectrogram only exhibits an oscillating
pattern sometimes referred to as time-frequency bubbles [22].
In that paper, an equivalent definition based on the phase was
proposed, but contrary to our result, the authors did not provide
conditions to characterize the presence of this phenomenon.
Note finally that the role played by σ for mode separation
purpose was also mentioned in [27].

We believe that this result can be useful for practitioners
since, in case of interference leading to time-frequency bub-
bles, it should be possible to separate the modes by increasing
σ locally until three extrema show up, which should ease mode
separation. Finally, note that other separation conditions were
already proposed in the literature (e.g. Eq. (11) of [28]), but the
purpose was to put forward when the modes did not overlap
in the TF plane, which is not our goal here.

III. CASE OF TWO PARALLEL LINEAR CHIRPS

Our goal is now to extend the previous results to parallel
linear chirps. We thus consider f(t) = f1(t) + f2(t) with
f1(t) = Ae2iπφ1(t) and f2(t) = e2iπφ2(t), with φi(t) = ait+
c
2 t

2 with c constant. As one has [28]

V hf1(t, η) = f1(t)R−1/2e−
π(1+icσ2)(η−φ′1(t))2

R2σ2 e−i
θ
2 (5)

with R =
√
1+c2σ4

σ2 and θ = arctan(−cσ2), one obtains:

|V hf (t, η)|2 =

(
A2e−2π

(η−φ′1(t))2

R2σ2 + e−2π
(η−φ′2(t))2

R2σ2

+2Ae−π
[(η−φ′1(t))2+(η−φ′2(t))2]

R2σ2 cos(2π(φ(t, η)))

)
/R,

(6)

with φ(t, η) = (a2 − a1)
(
t+ c

R2σ2

(
η − ct− a1+a2

2

))
.

We now show that when t and η satisfy a specific relation,
we end up with a similar expression as (3) for the spectrogram.
For that purpose, let us then consider the set of TF points (t, η)
such that cos(2πφ(t, η)) = λ. These points correspond to

φ(t, η) =
arccos(λ)

2π
+ k for k ∈ Z. (7)
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Replacing φ(t, η) by its value, such (t, η) satisfy t = Dη +
Bk,λ, with

D =
c

c2 −R2σ2

Bk,λ =
c(a22 − a21) +R2σ2( arccos(λ)

π + 2k)

2(R2σ2 − c2)(a2 − a1)
.

(8)

On such a straight line, setting σ̃ = 1−cD
Rσ , ξ̃1 =

a1+cBk,λ
1−cD ,

and ξ̃2 =
a2+cBk,λ

1−cD , (6) becomes:

|V hf (Dη +Bk,λ, η)|2 =
(
A2e−2πσ̃

2(η−ξ̃1)2

+e−2πσ̃
2(η−ξ̃2)2 + 2Ae−πσ̃

2[(η−ξ̃1)2+(η−ξ̃2)2]λ
)
/R,

(9)

which is the same expression as (3), replacing σ, ξ1 and ξ2
by σ̃, ξ̃1 and ξ̃2, and thus one can deduce the following

Proposition III.1. Let f1 = Ae2iπφ1(t) and f2 = e2iπφ2(t),
with φi(t) = ait + c

2 t
2, f1 and f2 are associated with two

chains of maxima of the spectrogram along the lines t = Dη+
Bk,λ, k ∈ Z, λ ∈ [−1, 1] iff

αc =

√
π

2

a2 − a1
Rσ

> 1, and

| log(A)| < −2 arcosh(αc) + 2αc
√
α2
c − 1.

(10)

Similarly to the case of two pure tones, the existence of
two separated ridges is here related to what happens when
λ = 1. Let us denote by (tk, ηk) a local maximum on the line
t = Dη+Bk,1 and then a neighboring point (t, η) of (tk, ηk)
in the direction of vector (1, c). For such a point, one has
η−φ′1(t) = ηk −φ′1(tk) and η−φ′2(t) = ηk −φ′2(tk) and, as
cos(2πφ(t, η)) < 1, one gets that (tk, ηk) is also a maximum
in the direction of the vector (1, c), and thus a local maximum
of the bidimensional function |V hf (t, η)|2. An illustration of the
two cases put forward in Proposition III.1 is displayed in Fig.
1 (c) and (d), corresponding respectively to the existence and
the absence of a chain of maxima associated with each mode.
In [25], the separation of close modes was also investigated
using linear chirp approximations for the different modes and
then considering the essential support of each mode in the
time-frequency plane, which they call a ribbon. The separation
condition in that paper was related to when the modes lead to
separate ribbons, which is essential for mode reconstruction.
But, even when ribbons overlap, one can still have different
ridges, which is what we study here.

IV. CONCLUSION

In this paper, we first put forward necessary and sufficient
conditions for the existence of ridges associated with each
of the modes of a two-tone signal. We noticed that these
conditions were very similar when dealing with parallel linear
chirps, except that the modulation has to be taken into account.
The novel results shown in this paper pave the way for
the detection of interference pattern in the TF plane and
would probably be useful to improve adaptive time-frequency
representation in which the window size varies with time. This
will be the topic for future works.

APPENDIX

A. Proof of Proposition II.1

Lemma. α being defined as in Proposition II.1, and put
γ = cos(2π(ξ2 − ξ1)t), |V hf (t, .)|2 has three extrema iff

α >
√

1+γ
2 and | log(A)| < − arcosh(X2) + 2α2

√
X2

2−1
X2+γ

,

with X2 = γ(α2 − 1) + α
√
γ2(α2 − 2) + 2, and a unique

extremum otherwise.

Proof. Consider l(η) = A2e−2πσ
2(η−ξ1)2 + e−2πσ

2(η−ξ2)2

+ 2Ae−πσ
2[(η−ξ1)2+(η−ξ2)2] cos(2π(ξ2 − ξ1)t), and then put

γ = cos(2π(ξ2 − ξ1)t). Setting η = ν + ξ1+ξ2
2 and

putting ξ = ξ2−ξ1
2 , one may define l1(ν) = l(ν +

ξ1+ξ2
2 ) = e−2πσ

2(ν2+ξ2)(A2e−4πσ
2ξν + e4πσ

2ξν + 2Aγ).
Putting ν = log(A)+µ

4πσ2ξ , one derives: l1(ν) = l2(µ) =

e
−2πσ2

[(
log(A)+µ

4πσ2ξ

)2
+ξ2

]
2A(cosh(µ) + γ). The derivative of l2

reads:

l′2(µ) =e
−2πσ2

[(
log(A)+µ

4πσ2ξ

)2
+ξ2

]

2A

[
− log(A) + µ

4πσ2ξ2
(cosh(µ) + γ) + sinh(µ)

]
which has the sign of (assuming γ 6= −1): g(µ) =

− log(A)+µ
2α2 + sinh(µ)

cosh(µ)+γ . Differentiating g we get g′(µ) =

− 1
2α2 + 1+γ cosh(µ)

(cosh(µ)+γ)2 which has the same sign as

g1(cosh(µ)) := − (cosh(µ) + γ)2

2α2
+ 1 + γ cosh(µ)

=
1

α2
(−cosh(µ)2

2
+ γ(α2 − 1) cosh(µ) + α2 − γ2

2
),

which is a second order polynomial in cosh(µ) whose dis-
criminant reads: ∆ = γ2(α2 − 2) + 2 > 0, and whose roots
are denoted by X1 and X2 with X1 < X2, and g1(X) > 0 if
X ∈]X1, X2[ and negative otherwise. To locate cosh(µ) with
respect to X1 and X2, one computes g1(1) = (γ+1)(1− γ+1

2α2 )

which has the sign of α2 − γ+1
2 . Assuming α ≤

√
γ+1
2 ,

g1(1) ≤ 0 and 1 belongs to ] − ∞, X1] or [X2,∞[. As
X1+X2

2 = γ(α2 − 1) < 1, 1 belongs to ]X2,+∞[. Finally,
as cosh(µ) ≥ 1, g1(cosh(µ)) and thus g′(µ) are negative,
which leads to the following table of variations:

µ −∞ µ1 +∞
+∞

g(µ)
−∞

l′2(µ) + 0 −
l2(µ)

and l(η) has a unique extremum (maximum) when α ≤√
γ+1
2 . If α >

√
γ+1
2 , then g1(1) > 0 and thus 1

belongs to ]X1, X2[. As cosh(µ) ∈ ]X1, X2[ is equiva-
lent to |µ| < arcosh(X2), g1(cosh(µ)) < 0 if µ ∈] −
∞,− arcosh(X2)[

⋃
] arcosh(X2),+∞[, and g1(cosh(µ)) is
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positive otherwise, leading to the following table of variations:

µ −∞ − arcosh(X2) arcosh(X2) +∞
g′(µ) − 0 + 0 −

+∞
g(µ)

−∞
g(µ) vanishes with a change of sign only once at some µ = µ2

if and only if g(− arcosh(X2)) ≥ 0 or g(arcosh(X2)) ≤ 0.
In this case, we deduce that

µ −∞ µ2 +∞
l′2(µ) + 0 −
l2(µ)

meaning l(η) has a unique extremum (which is a maximum). If
g(− arcosh(X2)) < 0 and g(arcosh(X2)) > 0, g(µ) vanishes
and changes signs three times at some µ = µ3, µ4 and µ5

leading to the following table of variations for l2:

µ −∞ µ3 µ4 µ5 +∞
g(µ) + 0 − 0 + 0 −

l2(µ)

In such case, l(η) has 2 maxima and a mimimum. Finally, as

g(arcosh(X2)) > 0

⇔ log(A) < − arcosh(X2) + 2α2

√
X2

2 − 1

X2 + γ

and g(− arcosh(X2)) < 0

⇔ − log(A) < − arcosh(X2) + 2α2

√
X2

2 − 1

X2 + γ
,

l(η) has three extrema if and only if α >
√

1+γ
2 and then if

| log(A)| < − arcosh(X2) + 2α2

√
X2

2−1
X2+α

with X2 = γ(α2 −
1) + α

√
γ2(α2 − 2) + 2.

To prove Proposition II.1, assume that −1 < γ ≤ 1,
since when γ = −1, one can easily check that the spec-
trogram has three extrema. l′2(µ) has the same sign as
g(µ, γ) = − log(A)+µ

2α2 + sinh(µ)
cosh(µ)+γ . From the lemma, l2

has three extrema iff α >
√

1+γ
2 , g(− arcosh(X2), γ) <

0 and g(arcosh(X2), γ) > 0, which is equivalent to: ∃ y0 <
0 g(y0, γ) < 0 and y′0 > 0 g(y′0, γ) > 0. Indeed, this
condition is a necessary condition since y0 = − arcosh(X2)
and y′0 = arcosh(X2) satisfy it. Conversely, if there exist
y0 < 0 and y′0 > 0 such that g(y0, γ) < 0 and g(y′0, γ) > 0,
as lim

µ→+∞
g(µ, γ) = −∞ and lim

µ→−∞
g(µ, γ) = +∞, l′2(µ)

changes signs three times, respectively on ]−∞, y0[, ]y0, y
′
0[,

and ]y′0,+∞[, thus l2 has three extrema. Finally, we show
that if l2 has three extrema for γ = 1, it has three extrema for
γ ∈]− 1, 1]. in the latter case, there exist y0 < 0 and y′0 > 0
such that g(y0, 1) < 0 and g(y′0, 1) > 0. Then, as γ ∈]− 1, 1]
one has ∀µ ∈ R 1

cosh(µ)+γ ≥
1

cosh(µ)+1 , which means that

∀µ ≥ 0, sinh(µ)
cosh(µ)+γ ≥

sinh(µ)
cosh(µ)+1 and ∀µ ≤ 0, sinh(µ)

cosh(µ)+γ ≤
sinh(µ)

cosh(µ)+1 . One deduces that ∀µ ≥ 0, g(µ, γ) ≥ g(µ, 1)

and ∀µ ≤ 0, g(µ, γ) ≤ g(µ, 1), meaning in particular that
g(y′0, γ) ≥ g(y′0, 1), and that g(y0, γ) ≤ g(y0, 1), implying

that g(y′0, γ) > 0 and g(y0, γ) < 0. Thus, whatever γ ∈]−1, 1],
the function g satisfies the condition for l2 to have three
extrema.

B. Existence of LMFs at time tk
Consider the function (Ae−πσ

2(η−ξ1)2 + e−πσ
2(η−ξ2)2)2

having the same extrema as l(η) = Ae−πσ
2(η−ξ1)2 +

e−πσ
2(η−ξ2)2 . Defining ξ = ξ2−ξ1

2 and making the change
of variables η = ν + ξ1+ξ2

2 , one gets q(ν) := l(ν + ξ1+ξ2
2 ) =

Ae−πσ
2(ν+ξ)2 + e−πσ

2(ν−ξ)2 . Differentiating q, one obtains
after some simplifications:

q′(ν) = 2πσ2e−πσ
2ν2

e−πσ
2ξ2ξ(Ae−2πσ

2ξν + e2πσ
2ξν)(

−ν
ξ

+ tanh(2πσ2ξν − log(A)

2
)

)
.

So has the sign of g(ν) = −νξ +tanh(2πσ2ξν− log(A)
2 ). Then:

g′(ν) =
−1 + 2πσ2ξ2

(
1− tanh2(2πσ2ξν − log(A)

2 )
)

ξ
,

which is negative if 2πσ2ξ2 ≤ 1. In such a case, g is
decreasing and as lim

ν→−∞
g(ν) = +∞ and lim

ν→+∞
g(ν) = −∞,

q′ annihilates once, and l has a unique extremum which is a
maximum. Now when 2πσ2ξ2 > 1, g′ has two zeros, and one
has the following table of variations:

ν −∞ ν1 ν2 +∞
g′(ν) − 0 + 0 −

+∞ g(ν2)
g(ν)

g(ν1) −∞

If g(ν1) ≥ 0, then g(ν) and hence q′(ν) annihilates once
and changes signs at some ν′2 in ]ν2,+∞[, at which q admits
a maximum which is the unique extremum. If g(ν2) ≤ 0,
g(ν) and hence q′(ν) annihilates and changes signs once for a
certain ν′1 in ]−∞, ν1[ and then q has a maximum at ν = ν′1
which is its unique extremum. If g(ν1) < 0 and g(ν2) > 0,
g(ν) and q′(ν) annihilate and change sign 3 times, once in
] − ∞, ν1[, once in ]ν1, ν2[, and once in [ν2,+∞[, and thus
q has three extrema. Now, Remember that ν1 and ν2 are the
roots of g′ thus also of 1− 1

2πσ2ξ2 = tanh2(2πσ2ξν− log(A)
2 )

and therefore

ν1 =
1

2πσ2ξ

(
log(A)

2
+ artanh

(
−
√

1− 1

2πσ2ξ2

))
ν2 =

1

2πσ2ξ

(
log(A)

2
+ artanh

(√
1− 1

2πσ2ξ2

))
,

and thus as α =
√

π
2σ(ξ2 − ξ1) =

√
2πσξ, we may write:

g(ν1) = − log(A)

2α2
−

log(α−
√
α2−1

α+
√
α2−1 )

2α2
−
√
α2 − 1

α

g(ν2) = − log(A)

2α2
−

log(α+
√
α2−1

α−
√
α2−1 )

2α2
+

√
α2 − 1

α
.

From this we deduce that g(ν1) < 0 and g(ν2) > 0, q
has three extrema, if and only if: | log(A)| < 2α

√
α2 − 1 −

log(α+
√
α2−1

α−
√
α2−1 ) = 2α

√
α2 − 1− 2 arcosh(α).
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