Loading [MathJax]/extensions/TeX/ietmacros.js
Image Compressed Sensing Reconstruction via Deep Image Prior With Structure-Texture Decomposition | IEEE Journals & Magazine | IEEE Xplore

Image Compressed Sensing Reconstruction via Deep Image Prior With Structure-Texture Decomposition


Abstract:

Deep image prior has been successfully applied to image compressed sensing, allowing capture implicit prior using only the network architecture without training data. How...Show More

Abstract:

Deep image prior has been successfully applied to image compressed sensing, allowing capture implicit prior using only the network architecture without training data. However, existing methods fail to take full advantage of the characteristics of the different components of the image signal, resulting in loss of details, and the network architecture is designed in a homogeneous way, which limits the performance. We propose a novel network architecture to capture distinct implicit priors for different image components under the guidance of a designed loss function. In addition, we design a novel module to extract and fuse the local and global features to facilitate the interaction between the two components and boost the performance. Sufficient experiments demonstrate the competitive performance and effectiveness of our method.
Published in: IEEE Signal Processing Letters ( Volume: 30)
Page(s): 85 - 89
Date of Publication: 02 February 2023

ISSN Information:

Funding Agency:


Contact IEEE to Subscribe

References

References is not available for this document.