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Deep Ordinal Regression Framework for
No-Reference Image Quality Assessment

Huasheng Wang, Yulin Tu

Abstract—Due to the rapid development of deep learning tech-
niques, no-reference image quality assessment (NR-IQA) has
achieved significant improvement. NR-IQA aims to predict a real-
valued variable for image quality, using the image in question as
the sole input. Existing deep learning-based NR-IQA models are
formulated as a regression problem and trained by minimising the
mean squared error. The error measurement does not consider the
relative ordering between different ratings on the quality scale,
which consequently affects the efficacy of the model. To account
for this problem, we reformulate NR-IQA learning as an ordinal
regression problem and propose a simple yet effective framework
using deep convolutional neural networks (DCNN) and Transform-
ers. NR-IQA learning is achieved by a deep ordinal loss and using
a soft ordinal inference to transform the predicted probabilities
to a continuous variable for image quality. Experimental results
demonstrate the superiority of our proposed NR-IQA model based
on deep ordinal regression. In addition, this framework can be
easily extended with various DCNN architectures to build advanced
IQA models.

Index Terms—Convolutional neural networks, deep learning,
image quality assessment, ordinal regression.

I. INTRODUCTION

N RECENT years, multimedia technologies have trans-

formed our daily lives including the widespread use of digital
cameras, smartphones, video surveillance systems, etc. These
technologies produce large amounts of images, which typically
exhibit different levels of perceived quality. It is critical to de-
velop effective and reliable algorithms for image quality assess-
ment (IQA) and use these algorithms to optimise image process-
ing techniques, e.g., image retrieval [ 1], image denoising [2], and
visual discomfort prediction [3]. According to the usage of the
pristine/reference image, IQA models can be broadly classified
into three genres: full-reference (FR) [4], reduced-reference
(RR) [5], and no-reference (NR) [6], [7] models. Although
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FR-IQA and RR-IQA can achieve high performance, they are
impractical since reference is often unavailable in many cir-
cumstances. Hence, NR-IQA that operates on distorted images
directly has a great potential for real-world application scenarios.
The traditional NR-IQA models [8] utilise a two-stage frame-
work including feature extraction and quality score regression.
These models require prior knowledge of distortions to be able
to extract relevant features; and their performance heavily de-
pends on modelling of the natural scene statistics (NSS) [9]
or the human visual system (HVS) properties [10]. To develop
a universal approach for NR-IQA, recent research focuses on
designing models using deep convolutional neural networks
(DCNN) [11], [12]. Compared to the handcrafted feature-based
approaches [13], [14], DCNN-based methods have a powerful
capability to learn useful features for perceived image qual-
ity. These DCNN-based models have demonstrated satisfactory
results for NR-IQA. In the literature, considerable effort has
been made to learn a better feature representation. Some models
employ a multi-task framework using the auxiliary informa-
tion of a relevant sub-task (e.g., distortion classification [15]
or semantic classification [16]) to enhance the features of the
primary IQA sub-task. By exploiting the features of multiple
sub-tasks and simultaneously optimising sub-tasks in an end-to-
end fashion, these models can learn more discriminative feature
representations from images. However, the challenge lies in
obtaining adequate data for the auxiliary information, which
limits the generalisation ability of this approach. Some models
adopt multi-scale features to improve the prediction accuracy for
the IQA task, e.g. in [17], [18], Transformers are used to extract
multi-scale features, with the aim to fuse high-level semantic
information and low-level texture information.
Notwithstanding the significant progress made in the NR-IQA
problem, there is still room for improvement. A great deal of
attention has been paid to improving the DCNN-based model’s
ability to learn features for quality prediction. However, little
attention has been paid to the loss function. In order to predict
a continuous variable of image quality, existing models are
formulated as a regression problem and trained by minimising
the loss function of the mean squared error (i.e., L2 norm).
The L2 norm, however, ignores the relative ordering between
different scores on the quality scale, which affects the model’s
performance in predicting human judgements. To account for
this issue and to enable a model to produce quality scores
in agreement with subjective ratings, we reformulate NR-IQA
learning as an ordinal regression problem. To this end, we build a
simple yet effective framework integrating convolutional neural
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The network architecture of the proposed no-reference image quality assessment (NR-IQA) model. The input image is first processed by the CNN encoder.

Then the contextual information of feature maps is enhanced by the Transformer encoder. Finally, a deep ordinal loss (DO-loss) combined with a soft ordinal

inference (SO-inference) is used to predict the image quality score.

networks (CNNs) and Transformers. In this framework, learning
is achieved by a deep ordinal loss and using a soft ordinal
inference to transform the predicted probabilities to a continuous
variable for image quality. Experimental results show that this
can give significant improvements for NR-IQA.

II. PROPOSED METHOD

We describe the proposed deep ordinal regression NR-IQA
(DOR-IQA) in detail below.

A. Motivation

Inspired by the way human subjects rate image quality on a
given scale [19], we could interpret this as a two-step process
including placing the image first in one of the quality categories
(e.g., intervals representing “bad” through “excellent” on a
continuous scale from 0 to 10) based on overall perception
of the given image space and then refining the quality score
(i.e., producing a decimal number) by comparing the current
image with other images falling into the locality of perceived
quality. Based on this interpretation, our new proposal towards
DCNN-based NR-IQA is to formulate the model as an ordinal
regression (or ordinal classification) problem, which is better
suited to address the human levels of preference.

It should be noted that optimising a standard regression net-
work for the IQA problem could pose challenges such as slow
convergence. Given that the image quality score ranges from 0
to 10 and retains three decimal places, a regression problem can
be understood as a classification problem of predicting 10,000
categories, which causes a model to converge slow and to a poor
solution. Also, the loss function (i.e., L2 norm and its variants)
used by a regression network does not take into account the
ordering of quality ratings, and consequently cannot capture
human preference in the ground truth. Alternatively, if we treat
this as an ordinal regression problem by dividing the entire range
of quality scores into a series of intervals (e.g., ten discrete
bins) in a sequential order, a DCNN-based model is trained to
predict an ordinal variable (i.e., categorical quality score range).
Then, the output probability distribution can be used to infer a
decimal representing the final quality score. This will provide a

plausible solution for faster convergence and higher consistency
with ground truth.

B. IQA Framework

Based on above concept, we devise an ordinal regression
framework for NR-IQA. This is a simple yet effective DCNN
architecture without specific constrains or multiple sub-tasks.
The proposed network architecture is illustrated in Fig. 1, which
combines convolutional neural networks (CNNs) with Trans-
formers. The model aims to train a feature encoder that can learn
effective confidence of the quality categories. The resolution
of input image [ is w X h X 3 (w and h represent width and
height, respectively). Let f, represent the proposed model with
learnable parameters ¢, which include all network parameters
of the CNN backbone, Transformer and the last fully connected
(FC) layer. Let F1, Fa, F3, F4 denote the feature maps obtained
by the last layers of the CNN backbone (i.e., higher-level features
relevant for saliency), with their dimensions being %l, %, %, %
of the size of the input image, respectively. In order to integrate
multi-scale features and capture the interactions of local and
global information, we let 7, F», F3, F, through normalisation
and pooling layers. We use Euclidean norm to normalise these
feature maps before they enter the pooling layer, as the same
approach taken in [20]. By doing this, image features are treated
as a sequential input to the Transformer model, which allows
capturing long-range dependencies and correlations between
different parts of the image. More specifically, the sizes of
F1,Fa, F3 are unified to the same size of F4. Then they are
concatenated to form a new feature map F.Since F; ,Fo, F3, Fu
are from different layers of CNNs representing different image
properties, such as texture, edge and semantics, this makes F
carry rich information about the image content. In addition, Fis
sent to a Transformer encoder, which contains multi-head atten-
tion mechanism. Transformers are used to extract features with
enhanced contextual information. The Transformer encoder is
implemented as per [21] and we define F as the output of
the module. Finally, F is delivered to FC layer to obtain the
prediction of image quality categories.
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C. Deep Ordinal Regression

To reformulate IQA as an ordinal regression, we regard the
quality score as a continuous value which also contains ordering
information between different quality ratings. Therefore, we
discretize the entire range of ground truth image quality scores
into K sub-intervals of equal size,

d* _ \‘ S* — Smin

Smax — Smin
where |-| denotes the floor function, d* € {0,1,..., K — 1}
is the discrete label of ground truth, and s* is the original
continuous value of image quality score, Smin, Smax represent
the minimum and maximum scores in a given [QA database, re-
spectively. Hence the ordinal thresholds c* € {0,1,..., K1
are computed as follows,

x KJ (1)

k Smax —
C" = Smin t+

Smin

w_1 * k (2)
where k denotes a specific bin. Now, we adopt the conceptin [22]
to design a deep ordinal loss (DO-loss) for the network. More
specifically, this transforms a multi-class classification problem
to a set of binary classification sub-problems: for each instance
c* €{0,1,...,cK1}, a binary classifier is applied to predict
whether the ordinal value of a sample is larger than c*; and
the ordinal value of an unseen sample is predicted on the basis
of the classification results of the K — 1 binary classifiers. We
define the output of the model as Y = f;(I), where Y belongs
to a 2K-dimensional vector. the DO-loss can be computed as
follows,

d'—1 K-1
Lpo=->» WP =Y (1-InPk) 3)
k=0 d*

eY2k+1
eY2k +5112k-+1 ’

where P* =P(d > k) = d is the predicted dis-
crete label, P is the ordinal probability when d is larger than
k. Compared with the conventional use of cross-entropy loss
to train a classification network, DO-loss can update DCNN
network parameters more effectively [22]. Due to the innate
ordinal properties contained in the quality ratings, the ordinal
loss is more responsive to predictions that are inconsistent with
the ordinal properties of ground truth.

Now, based on the output probabilities of K binary classi-
fication instances, the predicted image quality score s can be
computed as,

Cd + Cd+1
2

S =

K-1

d= > n(P*>05) 4)

k=0

where 7(-) denotes an indicator function where 7(true) =1
and 7( false) = 0. The above operation (so-called hard ordinal
inference [23]) involves the use of a hard threshold, which will
lead to sudden changes (i.e., step effect [24]) in the transition
region of the model. To take the advantage of the probability (or
confidence) predicted by the network, we devise a soft ordinal
inference (SO-inference) by adapting the method in [22] to

our IQA context. The SO-inference can transform the output
probabilities to a continuous variable for image quality,

d+1 | .d+2

*(l—D)—s—%*D 5)
whered = |h|,D =h—d,h =Y 1, P*. Disbetween 0 and
1, indicating the extent to which the predicted category is close
to d + 1. In this soft reference, due to the introduction of the
adaptation factor D, the predicted score will adapt to the sparsity
of the discretization intervals, which enables the inferred score
to be closer to the ground truth.

cd + cd+l
2

S =

III. EXPERIMENTAL RESULTS
A. Experimental Protocols

To demonstrate the superiority of our proposed approach,
we rely on seven widely recognised IQA databases, including
TID2013 [33], LIVE [34], LIVE-FB [31], KonlQ-10K [35],
CSIQ [36], KADID-10K [37], and CLIVE [38]. We employ two
commonly used criteria, the Pearson Linear Correlation Coeffi-
cient (PLCC) and Spearman Rank-order Correlation Coefficient
(SROCC) to evaluate the performance of IQA models. Both
PLCC and SROCC range from 0 to 1 with a higher value indi-
cating better performance. Our experiments are implemented on
an NVIDIA GeForce RTX 3060 with PyTorch 1.8.0 and CUDA
11.2 for training and testing. Following the popular training
strategy used in existing DCNN- and Transformer-based IQA
methods [21], [29], we select 50 patches of 224x224 pixels
each randomly from each input image. The parameters of CNN
backbone (i.e., ResNet50 use in our model) are pre-trained on
the ImageNet classification task [39]. The model is then trained
end-to-end by using Adam [40] optimizer with learning rate
1 x 107°. We set at most 5 epochs and mini-batch size of 16
during traning process.

B. Performance Evaluation

Table I lists the performance of the proposed DOR-IQA and
other 12 state-of-the-art DCNN-based IQA metrics, where the
best and second- and third-best results are labelled in red, blue
and green colours, respectively. As shown in the table, our
proposed DOR-IQA achieves superior performance on PLCC
and SROCC. Our proposed model outperforms the existing
methods by a significant margin on both the KADID and KonlQ
databases, which represent large-scale IQA databases. More
specifically, our model’s performance is 2.7%, 2.4% (PLCC,
SROCC) higher than that of TRes (second-best) on the KADID
database; and is 1.5%, 1.6% (PLCC, SROCC) higher than that
of TRes on the KonlQ database. This demonstrates our model’s
ability in handling complex and diverse natural scenes (as the
feature of KADID and KonIQ databases).

To verify the superiority of using DO-loss rather than L.2-loss
(as per the plausible reason described in Section II-A) and
demonstrate that DO-loss can be effectively embedded in other
DCNNSs, we conduct an ablation study. In our experiments, we
use two popular baselines VGG [41] and Resnet-50 [42]; and
implement both L2-loss and DO-loss by modifying the last fully
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TABLE I
PERFORMANCE COMPARISION OF IQA METRICS

LIVE CSIQ TID2013 KADID CLIVE KonlQ LIVEFB
PLCC__SROCC | PLCC_ SROCC | PLCC_ SROCC | PLCC_ SROCC | PLCC__SROCC | PLCC__ SROCC | PLCC__ SROCC
DIIVINE [25] [0908 0892 | 0776 0804 | 0567 0643 | 0435 0413 | 0591 0588 | 0558 0546 | 0187  0.092
BRISQUE [26] | 0944 0929 | 0748 0812 | 0571  0.626 | 0567 0528 | 0629 0629 | 0.685 0681 | 0341 0303
ILNIQE [14] | 0906 0902 | 0.865 0822 | 0.648 0521 | 0558 0534 | 0508 0508 | 0537 0523 | 0332 0294
BIECON [27] | 0961 0958 | 0823 0815 | 0762 0717 | 0.648  0.623 | 0613 0613 | 0654 0651 | 0428 0407
MEON [15] | 0955 0951 | 0864 0852 | 0.824  0.808 | 0.691 0604 | 0710 0697 | 0.628 0611 | 0394 0365
WaDIQaM [6] | 0955 0960 | 0844  0.852 | 0.855 0835 | 0752 0739 | 0.671  0.682 | 0807  0.804 | 0467 0455
DBCNN [28] | 0971 0968 | 0959 0946 | 0.865 0816 | 0856 0851 | 0.869  0.869 | 0.884 0875 | 0551 0545
TIQA [29] 0965 0949 | 0838  0.825 | 0.858  0.846 | 0855 0850 | 0.861  0.845 | 0903  0.892 | 0581 0541
MetalQA [30] | 0959 0960 | 0908  0.899 | 0868 0856 | 0775 0762 | 0.802  0.835 | 0.856  0.887 | 0.507  0.540
P2P-BM [31] | 0958 0959 | 0902 0899 | 0856  0.862 | 0.849  0.840 | 0842 0844 | 0885 0872 | 0598 0526
HyperlQA [32] | 0966 ~ 0962 | 0942 0923 | 0.858  0.840 | 0.845  0.852 | 0.882  0.859 | 0917 0906 | 0.602 0544
TReS [21] 0968 0969 | 0942 0922 | 0.883  0.863 | 0858 0859 | 0.877  0.846 | 0928 0915 | 0.625  0.554
DOR-IQA 0978 0977 | 0961 0945 | 0901  0.887 | 0.885  0.883 | 0.891  0.871 | 0943 0931 | 0.643 0573
TABLE II
PERFORMANCE OF IQA BASED ON L2-L0ss VERSUS DO-LOSS
Dataset Method PLCC SROCC | Dataset Method PLCC SROCC
VGG+L2 0.868 0.839 VGG+L2 0.823 0.801
LIVE VGG+DO-loss 0.903 0.894 CsIQ VGG+DO-loss 0.865 0.839
Resnet-50+L2 0.911 0.895 Resnet-50+L2 0.886 0.867
Resnet-50+DO-loss | 0.954 0.941 Resnet-50+DO-loss | 0.926 0.914
VGG+L2 0.822 0.805 VGG+L2 0.803 0.786
VGG+DO-loss 0.853 0.841 VGG+DO-loss 0.851 0.842
KonlQ Resnet-50+L.2 0865 0849 | 11D2013 Resnet-50+1.2 0.842 0821
Resnet-50+DO-loss | 0.903 0.886 Resnet-50+DO-loss | 0.875 0.954
VGG+L2 0.817 0.796 VGG+L2 0.774 0.776
VGG+DO-loss 0.849 0.834 VGG+DO-loss 0.821 0.832
CLIVE  Resnet50+12 | 0843 0821 | KAPID  Recnetsorl2 | 0827 0825
Resnet-50+DO-loss | 0.867 0.856 Resnet-50+DO-loss | 0.851 0.858
1.000
o PLCC IV. CONCLUSION
o 0975 —e— SROCC ;
- In this letter, we have proposed a new framework for no-
£ rons reference image quality assessment based on deep ordinal re-
© 092 . S . . .
S 100 gression. The training process is regularised by a deep ordinal
S 0'8” T e T i loss, aiming to learn efficient representations of the probability
s O'Si;] o Il (confidence) of the quality categories. Then a soft ordinal infer-
S ence is used to transform the discrete prediction output to a con-
0.825 . . . .
tinuous variable for image quality. To the best of our knowledge,
0800 . . . .
O e e O this is the first attempt to build an ordinal regression NR-IQA
umber or Intervals . . . . .
model with an effective solution. Extensive experimental results
Fig. 2. Model performance versus different choices of K on the TID2013  on popular databases demonstrate the superior performance of

dataset.

connected layer of the baseline network. Table II shows the
performance of IQA variants using L2-loss versus DO-loss on
popular IQA databases. It can be seen that by equipping IQA
with our proposed DO-loss, both baselines can achieve more
than a 4% increase in PLCC/SROCC.

We also explain the choice of K-discretization intervals (see
(1)) in our model. To reveal the impact of the choice of K on the
model’s performance, we conduct experiments using different
choices of K (i.e., K=10, 20,...70). Fig. 2 illustrates the model
performance versus different choices of K on the TID2013
dataset. Note, the results on other databases show the same trend
therefore not visualised here. As shown in Fig. 2, the model’s
performance peaks at K=30 and tends to be saturated onwards.
Therefore, K=30 is used in our model.

our proposed model against the state-of-the-art. The proposed
framework can be easily extended to design advanced IQA
models in the future.
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