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Abstract—Type-based multiple access (TBMA) is a semantics-
aware multiple access protocol for remote inference. In TBMA,
codewords are reused across transmitting sensors, with each
codeword being assigned to a different observation value. Existing
TBMA protocols are based on fixed shared codebooks and on
conventional maximum-likelihood or Bayesian decoders, which
require knowledge of the distributions of observations and
channels. In this letter, we propose a novel design principle for
TBMA based on the information bottleneck (IB). In the proposed
IB-TBMA protocol, the shared codebook is jointly optimized with
a decoder based on artificial neural networks (ANNs), so as to
adapt to source, observations, and channel statistics based on data
only. We also introduce the Compressed IB-TBMA (CIB-TBMA)
protocol, which improves IB-TBMA by enabling a reduction in
the number of codewords via an IB-inspired clustering phase.
Numerical results demonstrate the importance of a joint design
of codebook and neural decoder, and validate the benefits of
codebook compression.

Index Terms—Type-based multiple access, semantic communi-
cation, machine learning, information bottleneck

I. INTRODUCTION

Conventional multiple-access channel (MAC) protocols for
remote inference, which are central to many Internet-of-Things
(IoT) deployments, are designed with the aim of recovering
individual messages from the sensing devices. As a result, the
required spectral resources grow proportionally to the number
of devices. In the presence of a large number of devices,
this may lead to an excessive communication overhead. This
paper follows the work initiated by [1], [2] to investigate MAC
protocols for remote inference based on type-based multiple
access (TBMA). By leveraging the semantic properties of
the inference problem, TBMA requires spectral resources that
grow with the diversity in observations, rather than with the
number of devices.

In TBMA, all sensing devices share the same codebook,
and each codeword is assigned to a single range of values
for the sensors’ observations. Therefore, devices making the
same observation transmit the same codeword. Intuitively,
assuming that the codewords are orthogonal, the receiver can
estimate the number of devices making the same observations
by measuring the power received for each codeword. This way,
TBMA can be considered as a form of over-the-air computing
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Fig. 1. A TBMA-based system for remote estimation at a fusion center. We
are interested in jointly optimizing the shared codebook used by the sensors
for encoding, as well as the decoding operation at the fusion center.

(see, e.g., [3]), whereby the receiver extracts information from
multiple sufficient statistics obtained via the combination of
signals transmitted by the devices. It can also be viewed as
a form of joint source-channel coding, as it directly maps
the observations of the devices to transmitted symbols in a
way that directly optimizes the quality of the recovery of the
“semantics” of the information source at the receiver [4], [5].

The original papers [1], [2] provided the theoretical un-
derpinning for TBMA, and devised a practical variant of
a maximum likelihood (ML) estimator at the fusion center.
Reference [6] extended TBMA from a single-cell setting to
multiple-cell systems, by leveraging in-cell TBMA in con-
junction with inter-cell frequency reuse. TBMA was further
extended to multi-event detection in random access scenarios,
and approximate message passing (AMP) algorithms were
designed on the assumption of sparse user activity in [7], [8].

The described state of the art on TBMA has the following
limitations, which we aim to address in this letter. First,
existing works adopt fixed transmission codebooks, which are
restricted to either orthogonal codewords – requiring large
transmission blocks – or randomized constructions. Second,
existing designs of TBMA detectors, such as ML and AMP,
assume knowledge of the channel and possibly of the source
statistics, which are practically rarely available.

To address these aspects, in this letter, we propose for the
first time the use of a machine learning methodology for
the end-to-end design of TBMA protocols that are capable
of operating under unknown source and channel statistics.
Specifically, we adopt the information bottleneck (IB) prin-
ciple as a design criterion, and introduce a novel IB-driven
clustering approach to optimize the TBMA codewords. The
proposed protocols are designed via a joint optimization of
the shared codebook and an artificial neural network (ANN)-
based decoder (see Fig. 1).

This way, this letter contributes to a growing line of work
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on the end-to-end design of communication systems based on
joint source-channel coding principles and enabled by neural
transceivers (see, e.g., [9]–[12]). The IB principle, initially for-
malized in the context of rate-distortion theory [13], has found
applications as a design criterion for communication systems
in several settings, including cloud radio access networks and
edge computing [14]–[17]. To the best of our knowledge, this
is the first work that proposes the application of IB to the
design of TBMA protocols.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider a wireless sensor
network in which K sensing devices individually observe a
target random variable (RV) s, and communicate information
about their local measurements to a fusion center (FC) using
a joint source-channel coding strategy. As anticipated in the
previous section, we adopt a TBMA protocol [1], [2], which
directly maps observations to channel symbols, and we take a
semantics-aware end-to-end design approach that jointly opti-
mizes encoding and decoding at the FC, aiming at producing
an estimate ŝ of the quantity s.

1) Encoding: As in [2], the target RV s is discrete, and
has an unknown probability distribution p (s) on its sup-
port S. Each sensor k obtains a measurement wk that is
related to the target RV s through the unknown conditional
distribution p (w | s). Observations of different sensors are
conditionally independent given s. Therefore, the vector of
observations w = [w1, . . . , wk, . . . , wK ]

T is distributed as
w ∼

∏K
k=1 p (wk | s) when conditioned on s. The observa-

tions wk are also discrete, and take values, without loss of
generality, in the set {0, 1, . . . ,M − 1}.

According to the TBMA protocol, the sensors share a code-
book for transmission to the FC that consists of M codewords.
Each codeword cm ∈ CN×1 is assigned to an observation
value m ∈ {0, 1, . . . ,M − 1} and consists of N symbols.
Accordingly, when observing wk = m, device k transmits
codeword cm across N channel uses. Each codeword abides
by power constraints ‖cm‖2 ≤ E. In previous work [2], [6],
codewords were chosen to be orthogonal, requiring N ≥ M ;
while in [7], [8] all codewords were generated randomly
with entries i.i.d. CN (0, E/N). In contrast, in this work,
we leverage machine learning tools to adapt the codebook
C = [c1, . . . , cm, . . . , cM ] ∈ CN×M to the semantics of the
problem defined by the unknown distributions p(s), p (w | s),
as well as by the channel distribution and by the estimation
loss function, both of which will be defined below.

2) Channel: The FC observes the coherent sum of the
signals corrupted by noise and fading on the shared MAC.
We denote hk as the flat-fading coefficient for sensor k.
Furthermore, we introduce the one-hot vector uk ∈ BM×1,
with all zero entries except for a single 1 at the (wk + 1)-
th position, for each observation wk; as well as matrix U =
[u1, . . . ,uk, . . . ,uK ] ∈ CM×K that gathers all observations.
With these definitions, the received signal can be expressed as
the superposition

y =

K∑
k=1

hkCuk + z = Chw + z ∈ CN×1, (1)

where we have defined the vector hw = Uh with h =
[h1, . . . , hk, . . . , hK ]T ∈ CK×1, and z ∈ CN×1 denotes the
Gaussian noise for N -dimensional codewords with every entry
drawn i.i.d. as CN

(
0, σ2

z

)
. Note that the effective channel

vector hw carries information about the observations made by
the sensors, since each entry m of the vector is non-zero only
if at least one sensor k has made the observation wk = m. The
channel vector h has an unknown distribution, which translates
into an unknown conditional distribution p(hw|w).

3) Decoding: Previous works [2], [6]–[8] assumed that the
receiver implements either ML or Bayesian estimators, both
of which require knowledge of the distributions p (w | s) and
p (y | w), with the latter also requiring p(s). In contrast, in
this work we introduce a data-driven ANN estimator fθ (·)
parameterized by a vector θ. The ANN fθ (·) takes as input the
received signal y, and produces as its output the conditional
probability distribution q (s | y, θ) over the values S of the
target RV s. A hard estimate of the RV s can hence be obtained
as ŝ = argmaxs∈S q(s | y, θ).

III. IB-TBMA PROTOCOLS

In this section, we introduce the proposed IB-based TBMA
protocols, which implement an IB-inspired optimization of
shared codebook and neural estimator at the FC.

A. IB-based Optimization Problem

The design goal of the TBMA system is to maximize the
accuracy of the estimate ŝ for the given number of available
channel samples N . To characterize the trade-off between
estimation accuracy and spectral efficiency via the number of
channel uses, we adopt an IB-based design criterion.

We write as I (a; b) = Ep(a,b) {log [p (a, b) /(p(a)p(b))]}
the mutual information (MI) between two random variables
a and b with joint distribution p(a, b) and marginal distribu-
tions p(a) and p(b) [18]. With this definition, the proposed
performance criterion is given

L (C, θ) = −I (y; s) + βI (y;w) , (2)
where β > 0 is a Lagrange multiplier. In (2), the MI I (y; s)
gauges the amount of information available at the receiver
about the target RV s. Therefore, maximizing this term directly
affects the accuracy of the estimate ŝ that can be extracted
by the ANN from the received signal y. In contrast, the
MI I (y;w) captures the information that can be extracted
from the received signal y about the individual observations
of the sensors. Minimizing this term forces the codebook to
contain more similar codewords. This, in turn, can be used, as
discussed in Sec. III-C to compress the codebook C, which
can improve the spectral efficiency and robustness to noise of
the remote estimation system.

B. Variational Optimization

A direct minimization of the IB criterion (2) is infeasible
since we assume no access to the distributions of the target
RV s, of the observations w and of the channel vector h.
We hence adopt as performance criterion a variational upper
bound on (2) that can be estimated based on samples from RV
s, channels h, and noise z [19], [20].
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Algorithm 1 Codeword Clustering for CIB-TBMA
Input: Codebook C and threshold γ
Output: A set of clusters C

1: Initialization: Calculate distance matrix D = [dij ] ∈
RM×M , where dij = ‖ci − cj‖2 denotes Euclidean
distance between two codewords. Initialize the undirected
graph G = (V, E) with V = {v1, . . . , vi, . . . , vM}, where
vertex vi represents codeword ci, and the edge set E = ∅
is initially empty. Initialize the set of clusters as the empty
set, C = ∅.

2: for every pair of nodes vi, vj in V do
3: if eij /∈ E and dij ≤ γ then
4: Add an edge eij between nodes vi and vj
5: E = E ∪ {eij}
6: repeat
7: Find the largest clique G∗ = (V∗, E∗) as a subgraph of

graph G
8: Add the clique vertex set as a new cluster to the cluster

set, i.e., C = C ∪ {V∗}
9: Remove G∗, including all edges with one node in set V∗

from the graph G, obtain the smaller graph G = G\G∗
10: until G = ∅

To define the adopted performance criterion, we intro-
duce the Kullback-Liebler (KL) divergence DKL (p‖q) =
Ep(x) [log (p(x)/q(x))] as a measure of the “difference” be-
tween distribution p(x) and q(x) [18]. Furthermore, we write
p (y | w,C) = Ep(hw|w) [p (y | hw,C)] for the distribution
of the received signal (1) given the transmitted signal w
and codebook C, where the distribution p (hw | w) of the
effective channel depends on the unknown channel distribution
p(h); p (y | s,C) = Ep(w|s)p(hw|w) [p (y | hw,C)] for the
distribution of the received signal (1) given the target RV s
and the codebook C; and p (w) = Ep(s) [p (w | s)] for the
marginal distribution of the transmitted signals.

We adopt as performance criterion the following upper
bound LV (C, θ) on the IB function (2), which is given by

LV (C, θ) = D (C, θ) + βR (C) , (3)
with the “distortion” term, D (C, θ), is a measure of estimation
error, while the “rate” term, R (C), is an information-theoretic
regularizer. Accordingly, the upper bound takes the form of a
free energy metric [20], and the distortion and rate terms are
derived using standard steps as [19], [20]
−I (y; s) ≤ −Ep(s)p(y|s,C) [log q (s | y, θ)] , D (C, θ) (4)

where the ANN-based estimator q (s | y, θ) serves as a varia-
tional approximation to the distribution p (s | y); and
I(y;w) ≤ Ep(w) {DKL[p (y | w,C) ‖r(y)]} , R(C), (5)

where r(y) is a fixed, arbitrary distribution on the space of
the received signals.

Accordingly, the distortion term (4) measures the log-loss
of the ANN estimator on average over the target RV, channels,
and noise; while the rate term (5) is a regularizer that forces
the distribution of the received signals not to be too dependent
on the observation vector w.

To evaluate the expectations in (4) and (5), we apply
Monte Carlo sampling and the reparameterization trick [21]
to attain an unbiased estimate and facilitate backpropagation
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Fig. 2. MSE of the approximate ML estimator introduced in [2] and of the
proposed ANN-based decoder with fixed orthogonal codewords, within (a)
uniform prior and (b) non-uniform prior under Gaussian channels.

as described in [19] and [20, Ch. 10].

C. IB-TBMA and CIB-TBMA

We consider two implementations of the proposed IB-
TBMA protocols: (i) IB-TBMA: In IB-TBMA, the minimiza-
tion of (3) is carried out over codebook C and ANN decoder θ
by setting β = 0, hence targeting solely the accuracy criterion;
and (ii) Compressed IB-TBMA (CIB-TBMA): CIB-TBMA op-
erates across two phases of minimization of the objective (3),
with the goal of enhancing the detection performance of the
ANN decoder. CIB-TBMA is described next.

As discussed in the previous section, the introduction of
the rate term R (C) in the IB-based design objective (3)
tends to reduce the dependence of the received signal y
on the transmitted signals w, yielding optimized codebooks
with similar codewords. Leveraging this property of the IB-
based criterion, CIB-TBMA aims to reduce the number of
codewords. Reducing the number of codewords facilitates the
detection task of the ANN at the receiver, particularly in the
presence of a small number N of channel uses. The key idea
of the approach is to cluster the codewords by similarity after
a first optimization of the variational criterion (3).

1) Phase I: Uncompressed-codebook optimization: First,
we address the problem of minimizing the IB criterion (3),
with β > 0, over the codebook C and model parameters θ
of the ANN decoder q (s | y, θ). Then, we apply a clustering
algorithm on the M codewords, identifying the number M ′ ≤
M of clusters corresponding to groups of similar codewords.
The specific proposed compression scheme is summarized in
Algorithm 1, and explained below at point 3).

2) Phase II: Compressed-codebook optimization: In the
second phase, we address again the problem of minimizing the
IB criterion (3) over the codebook C and model parameters
θ of the ANN decoder. However, this time we constrain the
number of codewords to M ′ by assigning the observations cor-
responding to one cluster to the same codeword. Furthermore,
we set β = 0 in order to focus on the minimization of the
distortion term.

3) Codeword clustering: Inspired by [22], we devise a
graph-based clustering algorithm. The algorithm depends on
a threshold γ > 0 that is used to determine whether two
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codewords are “similar” or not. A larger threshold γ tends
to create fewer clusters, while a smaller γ generally yields
a larger number M ′ of clusters. In the clustering algorithm,
summarized in Algorithm 1, a vertex is included in the graph
for each codeword. Then, an edge is drawn between two
vertices if the two corresponding codewords are “similar”,
where similarity is measured by comparing the Euclidean
distance between the codewords to threshold γ. Finally, we
repeatedly remove from the graph the largest clique, i.e., the
largest subset of connected codewords, to form a new cluster.
Ties can be broken arbitrarily.

IV. PERFORMANCE EVALUATION AND CONCLUSIONS

In this section, we provide numerical examples in order to
evaluate the performance of the proposed IB-TBMA and CIB-
TBMA protocols. We are specifically interested in quantifying
the performance gains achievable via the use of a neural
detector and via IB-based compression.

Throughout, we assume Gaussian channels with hk = 1, as
well as Rician fading channels h ∼ CN (µ, σ2

hI) with an all-
one mean µ and variance σ2

h = 1. The average signal-to-noise
ratio (SNR) is defined as SNR = E/σ2

z . The hyperparameter
β is chosen via cross-validation as 0.0009. A single-layer
network with tanh activation function scaled by

√
E/N is

used for the codebook to ensure the power constraints. The
ANN decoder implements a two-layer perceptron with 16
hidden neurons, ReLU activation function, and an output
softmax layer with |S| neurons. Each output neuron reports
the confidence level of the model in the target RV taking
one of the |S| possible values. Minimization of the criterion
(3) is carried out via the Adam optimizer with learning rate
0.001 that decays tenfold every 10 epochs during 100 training
epochs. The mean squared error (MSE) E[(ŝ− s)2] is adopted
as the performance metric, where E [·] denotes the expectation
over target RV s, channels h and noise z.

1) ANN Decoder vs. ML Decoder: In this first experiment,
we fix the shared codebook and evaluate the advantage of
adopting a neural network decoder for TBMA as compared
to the (approximate) ML decoder introduced in [2]. The
ANN decoder is trained by minimizing (3) with β = 0. We
follow the setting considered in [2] where we have M = 2
and N = 2; the target RV can take values in set S =
{0.1i | i = 1, 2, . . . , 9}, and has either a uniform distribution
p(s) = 1/9 or the non-uniform distribution p(0.1) = p(0.9) =
0.05, p(0.2) = p(0.8) = 0.07, p(0.3) = p(0.7) = 0.12,

p(0.4) = p(0.6) = 0.16, p(0.5) = 0.2; while the distribution
of the observations, p (w | s), is Bernoulli with probability s.
The codebook is given by two arbitrary orthogonal codewords.

Fig. 2 evaluates the performance of the ANN decoder and of
the approximate ML decoder by considering the uniform prior
p (s) (Fig. 2(a)) and the non-uniform prior (Fig. 2(b)) under
a Gaussian channel. With a uniform prior, the ANN-based
estimator performs very close to the ML estimator. In contrast,
with a non-uniform prior, the ANN decoder outperforms the
ML method, especially in the regime of fewer sensors. This
is because the ANN estimator can incorporate the distribution
of the target RV via training, which is particularly important
in the regime of a limited number of observations.

2) IB-TBMA and CIB-TBMA: We now evaluate the per-
formance of IB-TBMA and CIB-TBMA, as introduced in the
previous section. As benchmarks, we consider: (i) Gaussian
codebook with ANN decoder (Gauss-ANN): Only the decoder
is optimized as discussed in the previous subsection, and
the codebook uses fixed randomized Gaussian codewords as
in [7], [8]; and (ii) IB-TBMA with fixed compression (FC-
IB-TBMA): FC-IB-TBMA applies IB-TBMA on a modified
system in which the M observations are partitioned into M ′

bins, with each bin containing adjacent values from the set
{0, 1, ...,M − 1}. The value M ′ is chosen to be equal to that
obtained by CIB-TBMA. The target RV takes values from the
set S = {0.2, 0.4, 0.6, 0.8} with equal probability; and we set
N = 5 and M = 20. The distribution p (w | s) is such that
p (w | s) = 1/20 for even values of w, including 0, for all
s ∈ S; while it is equal to a rescaled binomial distribution
with parameters (9, s) for odd values of w.

Fig. 3 plots the MSE of the considered methods versus the
number of sensors, and versus the SNR for Gaussian channels
and Rician fading channels. Both IB-TBMA and CIB-TBMA
are seen to yield significant performance advantages over ex-
isting strategies with fixed codebooks, showing the importance
of optimizing the shared codebook. Furthermore, codebook
compression is found to be especially advantageous for a
sufficiently large number of sensors and in the intermediate-
SNR regime for Gaussian channels. In the latter regime, the
performance bottleneck is set by channel noise, and codebook
compression helps facilitate the detection of fewer codewords
at the ANN. Compared with a fixed compression strategy
FC-IB-TBMA, the gain of CIB-TBMA demonstrates the im-
portance of an optimized clustering of the codewords that is
applied jointly with codebook and decoder design.
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