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Abstract—Kernel principal component analysis (kPCA) is a
widely studied method to construct a low-dimensional data
representation after a nonlinear transformation. The prevailing
method to reconstruct the original input signal from kPCA—an
important task for denoising—requires us to solve a supervised
learning problem. In this paper, we present an alternative
method where the reconstruction follows naturally from the
compression step. We first approximate the kernel with random
Fourier features. Then, we exploit the fact that the nonlinear
transformation is invertible in a certain subdomain. Hence, the
name invertible kernel PCA (ikPCA). We experiment with different
data modalities and show that ikPCA performs similarly to kPCA
with supervised reconstruction on denoising tasks, making it a
strong alternative.

Index Terms—Denoising, ECG, kernel PCA, pre-image, ran-
dom Fourier features, reconstruction.

I. INTRODUCTION

RINCIPAL Component Analysis (PCA) involves finding

a projection matrix P that transforms a given input
x € RP into a lower-dimensional representation z = Px €
R?, with d < p. Conversely, given a lower-dimensional
representation, the original input space can be reconstructed
with the inverse transformation & = P'z. The data x is
often assumed to lie on a low-dimensional manifold. In such
cases, PCA is beneficial since it enables the extraction of the
most important features or directions of maximum variability
in the data. The algorithm is optimal [1] in the sense that
there is no reconstruction matrix U and reduction matrix
V such that the average distance between the original and
reconstructed vector || &—UV || is smaller than for U = PT
and V = P. Importantly, the matrix P serves both as a tool
for dimensionality reduction and as a means for reconstructing
the original input through its transpose P .

Kernel PCA (kPCA) builds upon traditional PCA by en-
abling the study of the principal components after a nonlinear
transformation [2]. This allows for the generalization of the
assumption that the data lies on a low-dimensional linear mani-
fold to cases where this manifold is nonlinear. Traditional PCA
might not be capable of retrieving useful low-dimensional
representations z in this scenario, but kPCA might succeed
by using PCA after a nonlinear transformation ® of the input
x into a (possibly infinite-dimensional) feature space F

z = Pd(x). (1)
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Fig. 1: Illustration of our invertible kernel PCA method.

kPCA 1is indeed a natural and valuable idea. However, while
the dimensionality reduction can be easily computed it is far
from obvious how to obtain a reconstructed & from z.

This inverse reconstruction problem is known as the pre-
image problem. Solutions are proposed based on gradient
descent [3], nonlinear optimization [4] or distance constraints
in feature space [S]. The most widely disseminated solution
by Bakir et al. [6], is to apply (1) to construct a data set
D = {(z;, z;)}, consisting of original inputs and their low-
dimensional representations. The goal is to find a nonlinear
function f that maps z; back to «;. This approach is available,
for instance, in scikit-learn [7] or the multivariate statistics
package for Julia [8]. However, there are drawbacks to this
approach: Unlike PCA, reconstruction is not an immediate by-
product of kPCA and instead requires solving a supervised
learning (SL) problem. Here, we denote this combination
as kPCA+SL. Moreover, since the function f needs to be
nonlinear, the supervised problem of finding the map between
z and x usually results in a non-convex optimization problem.
Indeed, direct nonlinear approaches—such as autoencoders
[9], [10] and variational autoencoders [11], [12]—that concur-
rently implement dimensionality reduction and reconstruction,
can yield significantly improved performance over kPCA+SL.
While deep autoencoders are popular components of gener-
ative models, they require solving a non-convex optimiza-
tion problem. Contrarily, kernel methods and PCA are well-
understood and widely adopted preprocessing steps.

We propose a new formulation of KPCA that provides the
reconstruction method as a direct by-product. The method
works for any translational-invariant kernel. As we will discuss
in Section II, any such kernel can be approximated by a feature
map of the type ®(x) = o(Wax + b) with a nonlinearity o
and W € R"*P. Here, the dimensionality is reduced by the
following sequence of computations

a=Wz+b, (22)
B=o(a), (2b)
z = Ppg. (20)

The method we propose involves inverting the operations
step-by-step, as depicted in Fig. 1. If a particular operation
o(a) cannot be inverted, we decompose the vector v into two
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components cc— & and &, such that ¢ —a belongs to a domain
where ¢ is invertible. We can use PCA to compress and
decompress the first component, while the second component
is bypassed. In this way, we avoid any nonlinear supervised
problem and the reconstruction follows directly.

II. BACKGROUND

Let, k(x,y) be a positive semidefinite kernel
k(z,y) = (2(x), 2(y)) = > ¢i(®)ei(y), 3)

where ®(x) = (¢1(x), P2(x),...) denotes a sequence of
values that maps the input into the feature space F.

A. Kernel PCA

For a set of observations {x;}? ; the empirical covariance
matrix in F X F is given by

=

S|

> o(ai) ()"

i=1

The spectral decomposition of this matrix yields
2 = Z /\i’l)i'l);r,

such that \; > Ao > .... We define the projection into the
T .

first d components as P = [vl vd] . For which we

can obtain the lower dimensional representation z = P®(x).

B. Infinite dimensional feature maps

In practice, the kernel trick enables working with feature
spaces of infinite dimension. The method we propose here is
however intended for finite-dimensional feature spaces. Hence,
when dealing with infinitely dimensional feature maps, we
will resort to approximations. Specifically, we will use the
feature map truncated to the first 7 components denoted as
O(x) = (¢1(x), p2(x), ..., ¢-(x)) to approximate the kernel,
meaning that we can write k(x,y) = (®(x), ®(y)).

We follow the development of [13] using random Fourier

features to approximate a translation-invariant kernel, i.e. ker-
nels of the form k(x,y) = g(x — y). Bochner theorem guar-
antees that this kernel is continuous and positive semidefinite
iff g(9) is the Fourier transform of a probability distribution
p(w), possibly re-scaled.
Take as an example the Gaussian kernel k(x,y) =
exp_“mf_y‘Ig which allows for the decomposition (3) only
when considering an infinite dimensional feature space. To
approximate this features space with random Fourier features,
let W € R"*P be a matrix with random i.i.d. entries drawn
from the distribution p(w) and let b € R” be a vector drawn
i.id. from U(—m, 7). Then, we obtain

d(x) = V2sin(Wz + b),

where sin is applied element-wise. It is proved in [13] that,
(®(x), P(y)) converges uniformly to k(x,y). Moreover, the
convergence is exponentially fast in r.

III. INVERTIBLE KERNEL PCA

Let us consider feature maps of the type
O(x) =c(Wx +b),

where W € R™P, b € R" and o is a nonlinearity applied
element-wise. The discussion in the previous section moti-
vates how these feature maps can be used to approximate
the space associated with any translational-invariant kernel.
Next, we detail how to invert the operations, given that the
dimensionality reduction was computed according to (2). One
of the key challenges is the fact that the activation function o
is in general non-invertible. We describe our solution to deal
with these problems next.

A. Non-invertible activation functions

In most cases of interest, the nonlinear function o : R — R,
o : a — [ is not invertible in the entire domain R, but it
might be invertible in a subdomain X C R. Denote oy as
the function o restricted to X, then the inverse U;(l is well-
defined. Let @ = a—o ' oo (a). Consider two examples: First,
for the ReLU activation function 8 = o(a) = max(«,0), the
invertible domain is X = [0,00). Thus, o' (3) = 3 and
& = min(a,0). Second, for § = o(a) = sina, as used in
random Fourier features, we have that o is invertible in X =
(—=m/2,7/2]. Thus, 03" (B) = arcsin B and @ = (—1)Fa+k
for some k € Z.

B. ikPCA

The reconstruction method inverts the operations in (2) step-
by-step. We can write

B=Pz, (4a)
& =o' (B) +a, (4b)
Z = arg, min |[Wz + b — a3 + \|z|3. (4c)

The first step (4a) inverts the dimensionality reduction, and is
motivated by the same reasoning as PCA: the projection matrix
P is such that the reconstruction error ||[3—P T z|| is minimal.
The second step (4b), inverts the nonlinear function ¢ on the
subdomain X and adds the bypassed non-invertible part c.
Finally, the last step (4c) inverts the linear map  — Wx +b
by solving a Ridge regression problem. Notice that for A — 0T
the last step reduces to £ = Wi(a — b), where WT is the
pseudo-inverse of W, as in Fig. 1.

IV. NUMERICAL EXAMPLES

In this section, we outline the experiments to evaluate the
performance of the proposed ikPCA method. We focus on the
task of denoising inputs of various modalities. Quantitatively,
we evaluate the mean square error (MSE) between the de-
noised test signal and the true non-noisy test signal. We com-
pare ikPCA with PCA and kPCA+SL due to their structural
similarity. To ensure a fair comparison, we did not consider
denoising autoencoders, which present hierarchical, deep mod-
els. In the discussion, we detail how our methodology could
be extended to neural networks and a setup that could be better
compared with autoencoders.
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Fig. 2: S-curve toy example. Reconstruction MSE for a dif-
ferent number of random features chosen for ikPCA.

In all experiments, we consider the Gaussian kernel (or
its random Fourier feature approximation) and present the
results in terms of mean and standard deviation over 20
random runs. Parameters of the methods which are fixed in
an experiment were optimized through hyperparameter grid
search. For reproducibility, we release our code publicly'.

A. Synthetic toy data: s-curve

We generated synthetic 3-dimensional data points in the
shape of the letter ‘S’ using the s-curve toy problem. For
training and testing, we generate n = 2,000 data points
and add Gaussian noise with ¢ = 0.25. For kPCA+SL we
set the kernel width v = 1 and the reconstruction Ridge
strength A = 1; for ikPCA we set v = 0.5 and A = 1.
The results are presented in Fig. 2. Our proposed ikPCA
method is capable of denoising the data in a comparable
manner to KPCA+SL. For this problem, we observe that as
few as » = 50 random Fourier features were sufficient to
match the performance of kPCA+SL. This provides ikPCA
with a computational advantage over kKPCA+SL, which needs
to invert a n X n matrix.

B. USPS Images

We utilize the USPS data set which contains handwritten
digits in a greyscale format of size 16 x 16 and add Gaussian
noise with o = 0.5. We use n = 1, 000 images for training and
400 images for testing. For KPCA+SL we set v = 5 - 1073
and A = 10~2; for ikPCA we use 30,000 random Fourier
features and set v = 10~%. In Fig. 3, we vary the regular-
ization parameter A of ikPCA. Again, our findings show that
ikPCA performs similarly to kPCA+SL for an optimal number
of principal components d. The figure further suggests that
Ridgeless reconstruction behaves comparably in performance
to PCA. However, excessive regularization negatively affects
the overall reconstruction performance.

Fig. 4 displays image denoising results for noise scale
o = 0.25. For ikPCA we chose the optimal regularization
A = 1.3. The number of principal components d is chosen for

ICode is available at https:/github.com/dgedon/invertible_kernel_PCA
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Fig. 3: USPS data. Effect of regularization parameter .
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each method such that the MSE is minimised. All methods
demonstrate visually comparable image denoising capabilities,
which is supported by the difference in MSE from Fig. 3.

C. Electrocardiogram

The electrocardiogram (ECG) is a routine, medical test that
records the heart’s electrical activity, typically used to diagnose
various heart conditions. However, noise measured during the
recording can complicate the diagnosis. Several methods have
been proposed to de-noise the ECG signal. For comparisons,
two approaches have been suggested: (1) artificially adding
noise to the signal and comparing with the original one itself
[14]-[16], or (2) de-noise the existing signal and comparing it
to the mean beat as the noise-free reference [17], [18]. We
choose the latter approach to account for real-world noise
scenarios.

We utilize ECGs from the China Physiological Signal Chal-
lenge 2018 (CPSC)?> which contains data between 6 and 60
seconds long [19]. From the 918 ECGs with no abnormalities,
we selected the longest recordings and focused on a single lead

2Data is available at http://2018.icbeb.org/Challenge. html
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Fig. 5: Denoising of ECG beats from lead I. The blue area
marks the min/max values of the 21 test beats. The red dashed
lines show all test reconstructions with ikPCA.

in this example. To extract the beats, we first remove baseline
wander with a high-pass filter. Then, we identify the R-peaks
[20], resample the interval between each peak to 512 samples
and finally locate the R-peak at the 150th sample following
the preprocessing approach of Johnstone et al. [18].

We extracted 70 beats from the selected ECG; 49 for train-
ing and 21 for testing. Applying kKPCA+SL with v = 10 and
A =15, and ikPCA with vy =5- 1075 and ) = 10, along with
the minimum of 512 random Fourier features r, we achieved
perfect signal denoising using only the first component, as
shown in Fig. 5. Quantitatively over 500 simulations, the MSE
for ikPCA was 2.6 + 0.8 - 1075, similar to that of kPCA+SL,
while PCA had a slightly higher MSE.

V. COMPUTATIONAL CONSIDERATIONS

The computational complexity is not increased by adding
the reconstruction stage for ikPCA. The reason is that the
cost of obtaining the reconstruction is smaller than the cost
of the kPCA decomposition (whenever the input dimension
p is lower than the number of samples n). However, our
method requires the kernel map to be approximated by r
random Fourier features. When r < n this might reduce the
computational cost, but when r > n the computational cost is
increased by a factor of r/n + 1 compared to that of kPCA.

a) kPCA computational cost: Some kernels have closed
forms that can be computed in O(1) operations. The cost for
kPCA is then dominated by the inversion of the Gram matrix
K which requires O(n?) operations. The Gram matrix being
the matrix with entry (7, 7) equal to k(x;, ;).

b) Computation cost of PCA in the feature space: In
ikPCA we approximate the kernels with finite, r-dimensional
features ®(x) = (¢1(x),. .., ¢r(x)), and perform PCA on the
covariance matrix of the features 3 = LN B ()P (i)
Computing the entries of the matrix and its spectral de-
composition requires O(r?n + r*) operations. Hence, for
r < n, approximating the kernel and computing the spectral
decomposition of by might be computationally more efficient
than working directly with the Gram Matrix K as in kPCA.

However, if r > n this advantage is diminished and it can
be efficient to work with the Gram matrix K = ®(X) T ®(X)
instead of 3. K has the same (nonzero) eigenvalues as n3,
and its eigenvectors multiplied by ®(X) yield the eigenvectors
of n3. The cost in this formulation is O(rn?+n?). Therefore,
the cost is a factor of r/n + 1 times higher than the cost
obtained for kernels with a closed-form solution.

According to Claim 1 in [13], » = Q (E%log %) random
Fourier features are required to ensure an approximation error

smaller than e on a space of diameter D. Thus, r grows linearly
with the input dimension p. In the case of the s-curve example,
r < n, whereas in the USPS example, r > n, due to large p
and our method’s computational advantage is lost. For high-
dimensional data like the latter, Nystrom approximations [21]
could be used and be more efficient in terms of r [22].

c) Cost of reconstruction: The reconstruction cost in
ikPCA is dominated by the cost of solving the optimization
problem (4c). For this, we require computing the SVD of W
one single time with a cost of O(p®+p?r). The cost of solving
the reconstruction is then O(pr + dr) for each new é.

VI. CONCLUSION AND DISCUSSION

We propose an invertible version of KPCA+SL. While the
traditional approach solves a supervised problem to map back
from the latent space to the input space, our method obtains
this mapping naturally. We approximate the kernel transfor-
mation with random Fourier features ®(z) = o(Wz + b).
Although the nonlinear function ¢ might not be invertible, we
observe that it can be inverted in a subdomain. We can exploit
this observation by decomposing its input into invertible and
non-invertible parts and bypassing the second. We show the
effectiveness of our approach for denoising in three examples:
an s-curve toy problem, the USPS image data set and ECGs.

We compare our method with symmetric kPCA+SL. Sym-
metry implies here that the kernel for compression and re-
construction are defined identically, which is motivated by
implementations in common frameworks [7], [8]. However,
the method in [6] is not limited to this by design. Conversely,
ikPCA is required to have a symmetric setup due to the natural
inversion of the nonlinear transformation in the reconstruction.
While our method aligns well with kPCA+SL in the numerical
experiments we presented, it remains uncertain how it would
compare against a well-tuned non-symmetric kKPCA+SL.

Despite the simplicity of our method, there is a wide
array of possible extensions. To extend the representational
power, we can stack multiple layers of ®(z) = o(Wz + b)
transformations in a hierarchical way. Hence, we obtain a
structure which is closer to that of a deep autoencoder. This
may allow drawing further connections between the theoreti-
cally well-established kernel regime and neural networks. In
a similar direction, we can view the random Fourier features
in our method as an untrained, single-layer neural network.
Extending our method to trained neural networks would allow
performing reconstruction tasks naturally without re-training.
Finally, we experiment with underparameterized data (USPS
example with p/n ~ 0.25) and overparameterized data (ECG
example with p/n ~ 10). This fact, combined with the use
of a high number of random Fourier features, raises questions
about overparameterization and benign overfitting of denoising
models [23], [24].
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APPENDIX
A. Additional results on s-curve data set

The s-curve is generated by the following set of equations where the variable ¢ is often used as a label®. For our purposes,
we do not require labels but are only concerned with inputs x. Additive Gaussian noise v ~ N (0, 013) is added to x.

3 3
tNu (—571', 57’(') 5

r1 = sint,
T ~ u (0? 2) )
x3 = sign(t) (cost —1).

Fig. A-1 shows a visualisation of the s-curve data set. Fig A-2 is an extension of Fig 2 for a larger set of random Fourier
features r and for a second level of additive noise. For this data set, fewer random Fourier features are necessary than training
data points. Hence, our method is numerically faster. Already » = 500 features (less than 1/4 of the number of samples

n = 2,000) are sufficient for the optimal performance curve. We observe that for larger noise values, ikPCA even outperforms
kPCA+SL and PCA and that the effect of r is less pronounced.

Fig. A-1: Visualization of the s-curve data set. The colour indicates the regression label .
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Fig. A-2: Effect of the number of random features components on reconstruction MSE. Fig. 2 is a modified version of the left
figure here.

3See also https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_s_curve.html


https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_s_curve.html

SUBMITTED TO IEEE SIGNAL PROCESSING LETTERS, NO. XX, FEBRUARY, 2023 ii

B. Additional results on USPS data set

For the following plots, the hyperparameters for kPCA+SL (i.e. kernel width v and regularization strength \) were selected
such that the lowest reconstruction MSE was achieved. A grid search was utilized. For all results mean (and in error plots also
standard deviation) over 20 random runs are presented.

Fig. A-3 explores the effect of the number of random Fourier features r for this data set. We observe that generally more
random Fourier features yield asymptotically better results. Furthermore, we note that our method ikPCA approaches kPCA+SL
for » — oo as suggested by the approximation of the kernel.

Fig. A-4 explores the effect of the regularization parameter A for the reconstruction in our ikPCA method. We observe that
an optimal trade-off has to be found. For A — 0%, ikPCA approaches the performance of PCA. Conversely, for large values
of )\, the problem becomes over-regularized and does not generalize anymore.

Fig. A-5 shows the combined effect of the additive noise level and the number of principal components d chosen for the
latent space. The number of components with the lowest MSE for each method is shown in the left plot of Fig. A-6. We
observe that a larger noise value leads to a lower number of optimal principal components d, which is justified as the noise
level dominates a larger portion of singular values. Fig. A-6 subsequently shows the MSE values of all three methods when
choosing the optimal number of principal components d. We observe that the MSE for optimal tuned methods in this data set
is similar for all methods and noise levels.

Fig. A-7 is a reconstruction of USPS images for two different noise levels when choosing optimal hyperparameters for all
methods. As the quantitative comparison in the right plot of Fig. A-6 suggests, the reconstructions are also qualitatively similar.
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Fig. A-3: Effect of different number of random feature components on reconstruction MSE.
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Fig. A-4: Effect of regularization parameter A on reconstruction MSE. An optimal value has to be chosen. Right plot is a
repetition of Fig. 3.
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Fig. A-7: Reconstruction with different methods. Optimal hyperparameters were chosen for each method to achieve the lowest

MSE. Left plot is a repetition of Fig. 4.
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C. Additional results on ECG data

Fig. A-8 shows two more examples of reconstructing ECG signals, complementing Fig. 5. The same hyperparameters as in
the main text are chosen. In the right plot, we can see that for PCA some reconstructions (red dashed lines) are not optimal,
i.e. close to the ground truth line. This leads to a significantly higher MSE. Both kPCA+SL and ikPCA perform similarly.

Tab. A-1 compares the MSE values over 500 simulations with different train/test splits for the three ECG traces in Fig. A-8.
We observe that ikPCA and kPCA+SL perform similarly in terms of MSE, while PCA has a slightly higher MSE. Hence,

ECG denoising is not as good with a purely linear model.
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(a) Lead I of an ECG consisting of 70 beats (49/21 for training/test).
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(c) Lead II of an ECG consisting of 40 beats (28/12 for training/test).
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(b) Lead I of an ECG consisting of 62 beats (43/19 for training/test).

Fig. A-8: More ECG reconstruction results. Fig. A-8a is the same example as in Fig. 5.

| PCA kPCA+SL ikPCA | [unit]
ECG (a) | 4.004+1.47 2784074 2.57+0.79 | [1079]
ECG (b) | 3.20+£0.35 2.384+0.29 2.3240.31 | [1077]
ECG (c) | 8374593 243+1.63 2274149 | [1074]

TABLE A-1: Reconstruction MSE for different ECGs.
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