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TBFormer: Two-Branch Transformer for Image
Forgery Localization

Yaqi Liu, Binbin Lv, Xin Jin, Xiaoyu Chen, and Xiaokun Zhang

Abstract—Image forgery localization aims to identify forged re-
gions by capturing subtle traces from high-quality discriminative
features. In this paper, we propose a Transformer-style network
with two feature extraction branches for image forgery localiza-
tion, and it is named as Two-Branch Transformer (TBFormer).
Firstly, two feature extraction branches are elaborately designed,
taking advantage of the discriminative stacked Transformer
layers, for both RGB and noise domain features. Secondly, an
Attention-aware Hierarchical-feature Fusion Module (AHFM)
is proposed to effectively fuse hierarchical features from two
different domains. Although the two feature extraction branches
have the same architecture, their features have significant differ-
ences since they are extracted from different domains. We adopt
position attention to embed them into a unified feature domain
for hierarchical feature investigation. Finally, a Transformer
decoder is constructed for feature reconstruction to generate
the predicted mask. Extensive experiments on publicly available
datasets demonstrate the effectiveness of the proposed model.

Index Terms—Image forgery localization, two-branch, Trans-
former, hierarchical-feature fusion.

I. INTRODUCTION

EDITING digital images may change the semantic content
of original images, and the edited images are often too

realistic to distinguish their authenticity. It poses a threat to the
stability and harmony of the society if they are used illegally.
Image forgery localization is a kind of image forensics task
which aims at locating forged regions in investigated images,
and it has attracted more and more attention in both research
and industry [1]-[2].

Researchers have proposed many image forgery localization
methods for specific forgery types, e.g., splicing [3]-[7], copy-
move [8]-[12], and removal [13]-[14]. In practice, the inves-
tigated image may contain multiple forgery types at the same
time [15]-[16]. Some researchers [15]-[19] have also proposed
methods applicable to multiple forgery types, while many of
these methods extract features from the RGB domain [16].
Some researchers [14]-[15], [20]-[24] have also attempted to
combine features extracted from different domains. Wu et
al. [23] and Hu et al. [15] concated RGB image and its
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corresponding noise map before the feature extractor. Zhou
et al. [24] and Chen et al. [20] designed two parallel branches
to extract RGB features and noise features. While the above-
mentioned methods are constructed based on convolutional
neural networks.

In recent years, Transformer has been widely used in
various vision tasks, e.g., object detection [25]-[27] and image
segmentation [28]-[30], showing superior performance. Re-
searchers also tried to apply Transformer to image forgery
localization. Wang et al. [31] designed a multimodal Trans-
former framework. Instead of using images directly as the
input, they used convolutional layers to extract feature maps
for patch embedding. Sun et al. [32] adopted multiple Trans-
former layers to extract features only from the RGB domain,
and constructed a convolutional decoder.

In this paper, we propose a Transformer-style image forgery
localization network, namely TBFormer, and the architecture
is shown in Fig. 1. The noise domain contains subtle forgery
traces, which are visually invisible and difficult to capture
from the RGB domain. Therefore, we develop two feature
extraction branches with multiple Transformer layers to extract
discriminative features from the RGB domain and the noise
domain independently. The two branches have the same ar-
chitecture and their weights are not shared. The consideration
is that Transformer layers are powerful for discriminative
feature representation, and the non-shared design makes them
concentrate on their specific domains. However, the non-
shared feature extraction branches provide feature maps from
different domains with large differences. How to fuse these
feature maps becomes a key problem. Thus, we design an
Attention-aware Hierarchical-feature Fusion Module (AHFM)
to effectively fuse hierarchical features from two different
domains. RGB features and noise features from the same layer
are gone through a position attention module, to integrate
them into a unified feature domain. Then hierarchical features
are combined by element-wise addition and a convolutional
layer to get the final fused feature map with rich hierarchical
information from both RGB and noise domains. Finally, we
design a Transformer decoder to reconstruct the fused features
and provide the predicted mask. Category embeddings are set
in the decoder to further learn unified feature representations of
authentic and forged classes, and they are interacted with fused
feature map patch embeddings to produce the predicted masks.
Last but not least, in order to train and test our Transformer-
style network, we generate a synthesized image dataset with
140432 images for training, 7787 images for validating, and
7787 images for testing. The synthesized dataset is made
publicly available for further research.
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Fig. 1. Overview of the proposed TBFormer. TBFormer consists of two feature extraction branches, an AHFM module, and a Transformer decoder.

The main contributions of this paper can be summarized as
follows: (1) A novel Transformer-style network (TBFormer)
with two feature extraction branches is proposed for image
forgery localization. (2) An Attention-aware Hierarchical-
feature Fusion Module (AHFM) is proposed to effectively
fuse hierarchical features from two different domains. (3) A
Transformer decoder is constructed for feature reconstruction
to generate the predicted mask. (4) All our codes, models and
the generated dataset are available online (https://github.com/
free1dom1/TBFormer).

II. PROPOSED METHOD

A. Two-Branch Feature Extractor

To exploit the potential forgery cues in different domains,
we design two feature extraction branches to extract discrim-
inative features from the RGB domain and the noise domain.
The two branches have the same architecture, and their weights
are not shared which makes them concentrate on their specific
domains. We adopt BayarConv [33] for converting the RGB
domain to the noise domain. Transformer can overcome the
shortcomings of convolutional neural networks with only
limited receptive fields and has the powerful ability to model
contextual global dependencies [34]-[35]. The rich contextual
information is also crucial for locating forged regions, so
Transformer is adopted for our feature extraction.

The input color RGB image Ic ∈ RH×W×3 is first con-
verted to the noise map In ∈ RH×W×3 by BayarConv,
where W and H denote the width and height of the
input image. We divide Ic into image patches of size
16× 16 to obtain the sequence Xc =

{
x
(1)
c ,x

(2)
c , · · · ,x(N)

c

}
,

where x
(i)
c ∈ R16×16×3 and N = H/16×W/16 is the

number of image patches. Each image patch x
(i)
c is

reshaped into a one-dimensional vector, followed by
a linear projection layer to obtain the image patch
embedding sequence Pc =

{
p
(1)
c ,p

(2)
c , · · · ,p(N)

c

}
∈ RN×L,

where L denotes the feature dimension. The correspond-
ing position embedding pos

(i)
c is added to the im-

age patch embedding p
(i)
c to obtain the resulting in-

put sequence Ec =
{
e
(1)
c , e

(2)
c , · · · , e(N)

c

}
∈ RN×L, where

e
(i)
c = p

(i)
c + pos

(i)
c . Then Ec is fed into the feature extrac-

tor which is constructed based on 12 Transformer layers.

The feature maps of the 4th, 8th, and 12th layers (i.e.,
T

(4)
c ,T

(8)
c ,T

(12)
c ) are output for further investigation:

Tc =
{
T (4)
c ,T (8)

c ,T (12)
c

}
= fc (Ec) (1)

where fc denotes the feature extractor of the RGB branch.
The Transformer layer consists of a Multi-Head Self-Attention
(MSA) block and a Multi-Layer Perceptron (MLP) block, and
the architecture of the ith layer can be represented as:

M (i)
c = MSA(i)

c

(
LN
(
T (i−1)
c

))
+ T (i−1)

c (2)

T (i)
c = MLP(i)

c

(
LN
(
M (i)

c

))
+ M (i)

c (3)

where LN represents layer norm. The MSA(i)
c block is con-

stituted by the Self-Attention (SA) operation:

SA(i)
c

(
T (i−1)
c

)
= softmax

(
Q(i)

c

(
K(i)

c

)T
/
√
L

)
V (i)
c (4)

where query, key, value are computed as Q
(i)
c = T

(i−1)
c W

(i)
cQ ,

K
(i)
c = T

(i−1)
c W

(i)
cK , V

(i)
c = T

(i−1)
c W

(i)
cV , and W

(i)
cQ , W

(i)
cK ,

W
(i)
cV are the learnable parameters of three linear projection

layers in self-attention [36].
The same processes are performed on the noise map In

to obtain En ∈ RN×L. The noise features are obtained by
feeding En into the feature extractor of the noise branch:

Tn =
{
T (4)
n ,T (8)

n ,T (12)
n

}
= fn (En) (5)

where fn denotes the feature extractor of the noise branch,
T

(4)
n ,T

(8)
n ,T

(12)
n ∈ RN×L denote the features output by the

4th, 8th, and 12th Transformer layers.

B. Attention-aware Hierarchical-feature Fusion Module

The feature maps of the two branches have significant dif-
ferences for that they are extracted from different domains. A
carefully designed decoder is helpful for mask reconstruction
from different domains, and a well-designed feature fusion
module is also an indispensable part of a network to investi-
gate multi-domain information. We design an Attention-aware
Hierarchical-feature Fusion Module (AHFM) to effectively
fuse hierarchical features from two different domains.

For the RGB features and noise features from the
same layer, we construct a position attention block [37]

https://github.com/free1dom1/TBFormer
https://github.com/free1dom1/TBFormer
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Fig. 2. Computational procedure of Position Attention.

to investigate their correlation and fuse them into unified
feature maps. Taking the 4th-layer features as examples,
the matrixes T

(4)
c ∈ RN×L and T

(4)
n ∈ RN×L are trans-

posed and reshaped to get the three-dimensional tensors
T̂

(4)
c ∈ RL×h×w and T̂

(4)
n ∈ RL×h×w, where N = h× w,

h = H/16, and w = W/16. Then, T̂ (4)
c and T̂

(4)
n are concate-

nated along the channel dimension to get T̄ (4) ∈ R2L×h×w.
A convolution operation is performed on T̄ (4) to get
T̂ (4) ∈ RL×h×w, then three different convolutional layers
are constructed for T̂ (4) to obtain T̂ (4 1) ∈ RL/8×h×w,
T̂ (4 2) ∈ RL/8×h×w, and T̂ (4 3) ∈ RL×h×w. Then, they
are reshaped to T (4 1) ∈ RL/8×N , T (4 2) ∈ RL/8×N , and
T (4 3) ∈ RL×N . Position attention weights A(4) ∈ RN×N can
be computed as:

A(4) = softmax

((
T (4 1)

)T
T (4 2)

)
(6)

Then, we conduct matrix multiplication between T (4 3) and
A(4), and the computed result is reshaped to Ẑ(4) ∈ RL×h×w.
Then, Ẑ(4) is multiplied with a learnable weight α(4), and we
perform element-wise addition between the weighted Ẑ(4) and
T̂ (4). A convolution operation is conducted to get the fused
feature map Z(4) ∈ RL×h×w as follows:

Z(4) = Conv(4)

(
α(4)

(
T (4 3)A(4)

)
reshape

⊕ T̂ (4)

)
(7)

where ⊕ denotes element-wise addition. The detailed com-
putational procedure is shown in Fig. 2. Following the same
computational procedure, we can also get the fused feature
maps Z(8) for the 8th layer and Z(12) for the 12th layer.

In order to sufficiently integrate the hierarchical features,
we conduct element-wise addition followed by a convolution
operation to get the final fused feature map Z ∈ RL×h×w:

Z = Conv
(
Z(12) ⊕Z(8) ⊕Z(4)

)
(8)

The general framework of our AHFM module is shown in Fig.
1 (the bounding box of AHFM).

C. Transformer Decoder

Image forgery localization classifies each pixel in an image
into two classes, i.e., authentic class and forged class. It can
essentially be considered as a special image segmentation task.
We set two learnable category embeddings in the decoder to
further learn the feature representations of authentic and forged
classes [38], and they are interacted with the patch embeddings
of the fused feature map to produce the predicted masks. Our
decoder mainly contains 2 Transformer layers.

Specifically, Z ∈ RL×h×w is sequentially reshaped, trans-
posed, and linearly projected to obtain the embedding se-
quence Ż ∈ RN×L. Then Ż and the category embeddings

S ∈ R2×L are reconstructed by Transformer layers to obtain
Z̈ ∈ RN×L and S̈ ∈ R2×L. After performing linear projection
and L2 normalization on Z̈ and S̈, respectively, the quantiza-
tion value Ÿ ∈ RN×2 can be obtained by the scalar product
operation:

Ÿ = L2

(
fproj

(
Z̈
))(

L2

(
fproj

(
S̈
)))T

(9)

where L2 denotes L2 normalization and fproj denotes linear
projection. The transpose and reshape operations are per-
formed sequentially on Ÿ to obtain Y ∈ R2×h×w, and the
predicted mask M is computed as:

M = softmax (Upsample (Y )) (10)

where Upsample denotes the upsampling operation which can
resize Y to the same size as the input image. Our model is
trained using a pixel-level binary cross-entropy loss function.

III. EXPERIMENTS

A. Experimental Settings

1) Synthesized dataset: We generate a large amount of
synthesized images to train our Transformer-style network. For
splicing and copy-move operations, we enlarge the CASIA
v2.0 dataset [39]-[40]. By learning the association between
scenes and forged regions, we try to find the most concealed
position for inserting forged regions. Specifically, we select
the most suitable donor image based on the consistency of
chromaticity and complexity between the donor image and the
acceptor image. Using all forged regions as candidate donors,
we select the most suitable one for each CASIA v2.0 image
and insert it at the most concealed position. For enlarging
copy-move images in CASIA v2.0, we first find the authentic
image of the forged region, then further find the corresponding
copy-move image synthesized from this authentic image, and
insert the forged region again at the most hidden position in
this copy-move image. Each image of our enlarged CASIA
v2.0 contains multiple forged regions, which may come from
different images at the same time (possibly both from other
images and from that image itself). These characteristics
make the enlarged dataset more adaptable to complex forgery
scenarios in practical applications. For removal operation, we
randomly remove an annotated region from each ADE20k [41]
image and fill it using the SOTA inpainting method [42]. We
have generated 156006 synthesized images (140432 for train-
ing, 7787 for validation, and 7787 for testing. Our dataset can
be downloaded in https://github.com/free1dom1/TBFormer).

2) Testing data: We use four publicly available datasets,
i.e., NIST16 [43], CASIA v1.0 [40], IMD20 [44], and Realistic
[45], to evaluate the performance of our model. CASIA v1.0
contains splicing and copy-move images. NIST16, IMD20,
and Realistic contain splicing, copy-move, and removal im-
ages.

3) Evaluation metrics: We use F1-score, IoU and AUC as
evaluation metrics. 0.5 is chosen as the threshold for all images
when binarizing the predicted masks.

https://github.com/free1dom1/TBFormer
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4) Implementation details: All the input images are resized
to 512× 512. The feature extractor is initialized using the
ViT model provided in [46], and the Transformer layers in
the decoder are initialized using random weights from a
truncated normal distribution. We use the SGD optimizer with
the learning rate adjusted by the polynomial decay strategy
lr = lr0 (1− itercurrent/itertotal)0.9, where itercurrent de-
notes the current number of iterations, itertotal denotes the
total number of iterations, and lr0 = 0.001 denotes the initial
learning rate. We set the batch size to 8 and conduct 15-epoch
training, i.e., 263310 iterations.

B. Ablation Study and Robustness Analysis

TABLE I
ABLATION STUDY ON SYNTHESIZED DATASET

Variants Precision Recall F1 IoU
RGB-Only 0.922 0.872 0.890 0.825

RGB+Noise 0.9240.9240.924 0.875 0.892 0.828
RGB+Noise+AHFM 0.917 0.8850.8850.885 0.8930.8930.893 0.8300.8300.830

1) Ablation study: In order to verify the effectiveness of
the main modules, we set up different variants and conduct
a series of experiments on the testing set of the synthesized
dataset. Table I reports the experimental results of different
variants. “RGB-Only” indicates that only the features out-
put by the last layer of the RGB branch are fed into the
decoder, “RGB+Noise” means that a two-branch structure is
used, but only the features output by the last layer of two
branches are fed into the decoder after simply concatenation,
and “RGB+Noise+AHFM” denotes the proposed method, i.e.,
TBFormer. The results can demonstrate that both the two-
branch architecture and the AHFM module are helpful to
improve the performance. The F1-score and IoU can be
improved by adding each module. AHFM can improve the
recall with precision sacrificing, which indicates that AHFM
can reserve more information from multi-domain hierarchical
features, while cause more inevitable false alarms.

TABLE II
AUC SCORES OF TBFORMER ON IMD20 UNDER VARIOUS DISTORTIONS

Distortion AUC
no distortion 0.863
Resize(0.78×) 0.855 -0.008
Resize(0.25×) 0.853 -0.010

GaussianBlur(k=3) 0.852 -0.011
GaussianBlur(k=15) 0.792 -0.071

JPEGCompress(q=100) 0.861 -0.002
JPEGCompress(q=50) 0.822 -0.041

2) Robustness analysis: We conduct various distortion
transformations, e.g., resizing, JPEG compression and Gaus-
sian blur on the IMD20 dataset to evaluate the robustness of
the model, and the experimental results are shown in Table
II. From Table II, we can see that the AUC scores do not
significantly decrease under different distortions, which can
demonstrate the robustness of our TBFormer.

C. Comparison With State-of-the-art Methods

TBFormer is compared with six state-of-the-art methods,
i.e., RGB-N [24], ManTra-Net [23], SPAN [15], MVSS-Net
[20], PSCC-Net [19], and ObjectFormer [31]. Table III reports

TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS

Method NIST16 CASIA v1.0 IMD20 Realistic
AUC F1 AUC F1 AUC AUC

RGB-N 0.937 0.722 0.795 0.408 - -
ManTra-Net - - - - 0.748 0.680

SPAN 0.961 0.582 0.838 0.382 0.750 -
MVSS-Net - - 0.887 0.539 0.814 0.641
PSCC-Net 0.996 0.819 0.875 0.554 0.806 0.542

ObjectFormer 0.996 0.824 0.882 0.579 0.821 -
TBFormer 0.9970.9970.997 0.8340.8340.834 0.9550.9550.955 0.6960.6960.696 0.8630.8630.863 0.7380.7380.738

Fig. 3. Visual comparisons with the state-of-the-art methods.

the compared results on four publicly available datasets, and
Fig. 3 visualizes predicted masks of the methods with publicly
available codes. On the NIST16 dataset, RGB-N, SPAN,
PSCC-Net, and ObjectFormer are fine-tuned, and we follow
the same training/testing splits for fine-tuning the model to
make a fair comparison. On the CASIA dataset, RGB-N,
SPAN, PSCC-Net, and ObjectFormer are fine-tuned on CASIA
v2.0 and tested on CASIA v1.0. The training dataset of MVSS-
Net and our synthesized dataset are generated from CASIA
v2.0, so the results of MVSS-Net and TBFormer on CASIA
v1.0 are generated by the models without fine-tuning. The
results of MVSS-Net on all datasets, the scores of ManTra-Net
and SPAN on the IMD20 dataset, and the results of compared
methods on the Realistic dataset are obtained by the pre-
trained models released by the authors, and the rest of scores
are borrowed from their original papers. Table III shows that
TBFormer achieves the best performance on each dataset, and
it also can be seen in Fig. 3 that TBFormer can locate forged
regions more accurately.

IV. CONCLUSION

In this paper, we introduce a novel Transformer-based image
forgery localization model, named as TBFormer, which can
achieve superior performance. TBFormer uses two Trans-
former branches to extract RGB and noise features inde-
pendently to fully explore the potential forgery cues. The
Attention-aware Hierarchical-feature Fusion Module (AHFM)
is proposed for effectively integrating hierarchical features
extracted from RGB and noise domains. Finally, the predicted
mask is reconstructed by the Transformer decoder. In the
future, TBFormer can be further improved by considering edge
artifacts or other potential forgery cues.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

REFERENCES

[1] Y. Liu, X. Zhu, X. Zhao, and Y. Cao, “Adversarial learning for
constrained image splicing detection and localization based on atrous
convolution,” IEEE Trans. Inf. Forensics Secur., vol. 14, no. 10, pp.
2551-2566, 2019.

[2] Y. Liu, C. Xia, X. Zhu, and S. Xu, “Two-stage copy-move forgery
detection with self deep matching and proposal superglue,” IEEE Trans.
Image Process., vol. 31, pp. 541-555, 2022.

[3] D. Cozzolino, G. Poggi, and L. Verdoliva, “Splicebuster: A new blind
image splicing detector,” in Proc. IEEE Int. Workshop Inf. Forensics
Secur., 2015, pp. 1-6.

[4] Y. Wu, W. Abd-Almageed, and P. Natarajan, “Deep matching and
validation network: An end-to-end solution to constrained image splicing
localization and detection,” in Proc. 25th ACM Int. Conf. Multimedia,
2017, pp. 1480-1502.

[5] B. Liu and C.-M. Pun, “Deep fusion network for splicing forgery
localization,” in Proc. Eur. Conf. Comput. Vis. Workshops, 2018, pp.
237-251.

[6] Y. Liu, Q. Guan, X. Zhao, and Y. Cao, “Image forgery localization
based on multi-scale convolutional neural networks,” in Proc. 6th ACM
Workshop Inf. Hiding Multimedia Secur., Innsbruck, Austria, 2018, pp.
85-90.

[7] B. Liu and C.-M. Pun, “Exposing splicing forgery in realistic scenes
using deep fusion network,” Inf. Sci., vol. 526, pp. 133-150, 2020.

[8] D. Cozzolino, G. Poggi, and L. Verdoliva, “Efficient dense-field copy-
move forgery detection,” IEEE Trans. Inf. Forensics Secur., vol. 10, no.
11, pp. 2284-2297, 2015.

[9] Y. Wu, W. Abd-Almageed, and P. Natarajan, “Busternet: Detecting copy-
move image forgery with source/target localization,” in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 168-184.

[10] J. Zhong and C.-M. Pun, “An end-to-end dense-inceptionnet for image
copy-move forgery detection,” IEEE Trans. Inf. Forensics Secur., vol.
15, pp. 2134-2146, 2020.

[11] A. Islam, C. Long, A. Basharat, and A. Hoogs, “DOA-GAN: dual-order
attentive generative adversarial network for image copy-move forgery
detection and localization,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Seattle, WA, USA, 2020, pp. 4675-4684.

[12] M. Barni, Q.-T. Phan, and B. Tondi, “Copy move source-target disam-
biguation through multi-branch cnns,” IEEE Trans. Inf. Forensics Secur.,
vol. 16, pp. 1825-1840, 2021.

[13] X. Zhu, Y. Qian, X. Zhao X, B. Sun, and Y. Sun, “A deep learning
approach to patch-based image inpainting forensics,” Signal Process.
Image Commun., vol. 67, pp. 90-99, 2018.

[14] H. Li and J. Huang, “Localization of deep inpainting using high-pass
fully convolutional network,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis., 2019, pp. 8301-8310.

[15] X. Hu, Z. Zhang, Z. Jiang, S. Chaudhuri, Z. Yang, and R. Nevatia,
“SPAN: Spatial pyramid attention network for image manipulation
localization,” in Proc. Eur. Conf. Comput. Vis., Glasgow, UK, 2020,
pp. 312-328.

[16] Z. Gao, C. Sun, Z. Cheng, W. Guan, A. Liu, and M. Wang, “TBNet: A
Two-Stream Boundary-Aware Network for Generic Image Manipulation
Localization,” IEEE Trans. Knowl. Data Eng., 2022.

[17] J. H. Bappy, A. K. Roy-Chowdhury, J. Bunk, L. Nataraj, and B.
S. Manjunath, “Exploiting spatial structure for localizing manipulated
image regions,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2017, pp.
4970-4979.

[18] P. Zhou, B.-C. Chen, X. Han, M. Najibi, and L. Davis, “Generate,
segment and replace: Towards generic manipulation segmentation,” in
Proc. 34th Conf. Artif. Intell., NY, USA, 2020, pp. 13058-13065.

[19] X. Liu, Y. Liu, J. Chen, and X. Liu, “PSCC-Net: Progressive spatio-
channel correlation network for image manipulation detection and lo-
calization,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 11,
pp. 7505-7517, 2022.

[20] X. Chen, C. Dong, J. Ji, J. Cao, and X. Li, “Image manipulation
detection by multi-view multi-scale supervision,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis., 2021, pp. 14185-14193.

[21] Y. Rao and J. Ni, “A deep learning approach to detection of splicing
and copy-move forgeries in images,” in Proc. IEEE Int. Workshop Inf.
Forensics Secur., 2016, pp. 1-6.

[22] C. Yang, H. Li, F. Lin, B. Jiang, and H. Zhao, “Constrained R-CNN: A
general image manipulation detection model,” in Proc. IEEE Int Conf.
multimedia expo, 2020, pp. 1-6.

[23] Y. Wu, W. AbdAlmageed, and P. Natarajan, “ManTra-Net: Manipulation
tracing network for detection and localization of image forgeries with

anomalous features,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2019, pp. 9543-9552.

[24] P. Zhou, X. Han, V. I. Morariu, and L. S. Davis, “Learning rich features
for image manipulation detection,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2018, pp. 1053-1061.

[25] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S.
Zagoruyko, “End-to-end object detection with transformers,” in Proc.
Eur. Conf. Comput. Vis., Glasgow, UK, 2020, pp. 213-229.

[26] X. Pan, Z. Xia, S. Song, L. E. Li, and G. Huang, “3d object detection
with pointformer,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2021, pp. 7463-7472.

[27] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable DETR:
Deformable Transformers for End-to-End Object Detection,” in Proc.
Int. Conf. Learn. Representations, 2021.

[28] S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, and L. Zhang,
“Rethinking semantic segmentation from a sequence-to-sequence per-
spective with transformers,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2021, pp. 6881-6890.

[29] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo,
“SegFormer: Simple and efficient design for semantic segmentation with
transformers,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2021, pp.
12077-12090.

[30] H. Wang, Y. Zhu, H. Adam, A. Yuille, and L. C. Chen, “Max-deeplab:
End-to-end panoptic segmentation with mask transformers,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021, pp. 5463-5474.

[31] J. Wang, Z. Wu, J. Chen, X. Han, A, Shrivastava, S. N. Lim, and Y. G.
Jiang, “Objectformer for image manipulation detection and localization,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022, pp.
2364-2373.

[32] Y. Sun, R. Ni, and Y. Zhao, “ET: Edge-Enhanced Transformer for Image
Splicing Detection,” IEEE Signal Process Lett., vol. 29, pp. 1232-1236,
2022.

[33] B. Bayar and M. C. Stamm, “Constrained convolutional neural networks:
A new approach towards general purpose image manipulation detection,”
IEEE Trans. Inf. Forensics Secur., vol. 13, no. 11, pp. 2691-2706, 2018.

[34] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, and N. Houlsby, “An Image is Worth 16×16 Words:
Transformers for Image Recognition at Scale,” in Proc. Int. Conf. Learn.
Representations, 2021.

[35] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler, “Efficient transformers:
A survey,” ACM Comput. Surv., vol. 55, no. 6, pp. 1-28, 2022.

[36] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
and I. Polosukhin, “Attention is all you need,” in Neural Inf. Process.
Syst., 2017.

[37] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, “Dual attention
network for scene segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2019, pp. 3146-3154.

[38] R. Strudel, R. Garcia, I. Laptev, and C. Schmid, “Segmenter: Trans-
former for semantic segmentation,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2021, pp. 7262-7272.

[39] Y. Wei, J. Ma, Z. Wang, B. Xiao, and W. Zheng, “Image splicing forgery
detection by combining synthetic adversarial networks and hybrid dense
U-net based on multiple spaces,” Int. J. Intell. Syst., vol. 37, no. 11, pp.
8291-8308, 2022.

[40] J. Dong, W. Wang, and T. Tan, “Casia image tampering detection eval-
uation database,” in Proc. IEEE summit Int. Conf. signal Inf. Process.,
China, 2013, pp. 422-426.

[41] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso, and
A. Torralba, “Semantic understanding of scenes through the ade20k
dataset,” Int. J. Comput. Vision, vol. 127, pp. 302-321, 2019.

[42] J. Li, N. Wang, L. Zhang, B. Du, and D. Tao, “Recurrent feature
reasoning for image inpainting,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2020, pp. 7760-7768.

[43] “NIST: Nimble 2016 Datasets,” [Online]. Available:
https://www.nist.gov/itl/iad/mig/

[44] A. Novozamsky, B. Mahdian, and S. Saic, “IMD2020: A large-scale
annotated dataset tailored for detecting manipulated images,” in Proc.
IEEE/CVF Winter Conf. Appl. Comput. Vis. Workshops, 2020, pp. 71-80.

[45] P. Korus and J. Huang, “Multi-scale analysis strategies in PRNU-based
tampering localization,” IEEE Trans. Inf. Forensics Secur., vol. 12, no.
4, pp. 809-824, 2017.

[46] A. Steiner, A. Kolesnikov, X. Zhai, R. Wightman, J. Uszkoreit, and L.
Beyer, “How to train your vit? data, augmentation, and regularization
in vision transformers,” arXiv preprint arXiv:2106.10270.

http://arxiv.org/abs/2106.10270

	I Introduction
	II PROPOSED METHOD
	II-A Two-Branch Feature Extractor
	II-B Attention-aware Hierarchical-feature Fusion Module
	II-C Transformer Decoder

	III EXPERIMENTS
	III-A Experimental Settings
	III-A1 Synthesized dataset
	III-A2 Testing data
	III-A3 Evaluation metrics
	III-A4 Implementation details

	III-B Ablation Study and Robustness Analysis
	III-B1 Ablation study
	III-B2 Robustness analysis

	III-C Comparison With State-of-the-art Methods

	IV CONCLUSION
	References

