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Tucker Decomposition Based on a Tensor Train of
Coupled and Constrained CP Cores
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and André L.F. de Almeida¥ Senior Member, IEEE

Abstract—Many real-life signal-based applications use the
Tucker decomposition of a high dimensional/order tensor. A
well-known problem with the Tucker model is that its number
of entries increases exponentially with its order, a phenomenon
known as the “curse of the dimensionality”. The Higher-Order
Orthogonal Iteration (HOOI) and Higher-Order Singular Value
Decomposition (HOSVD) are known as the gold standard for
computing the range span of the factor matrices of a Tucker
Decomposition but also suffer from the curse. In this paper, we
propose a new methodology with a similar estimation accuracy
as the HOSVD with non-exploding computational and storage
costs. If the noise-free data follows a Tucker decomposition,
the corresponding Tensor Train (TT) decomposition takes a
remarkable specific structure. More precisely, we prove that for
a -order Tucker tensor, the corresponding TT decomposition
is constituted by ) — 3 3-order TT-core tensors that follow a
Constrained Canonical Polyadic Decomposition. Using this new
formulation and the coupling property between neighboring TT-
cores, we propose a JIRAFE-type scheme for the Tucker de-
composition, called TRIDENT. Our numerical simulations show
that the proposed method offers a drastically reduced complexity
compared to the HOSVD and HOOI while outperforming the
Fast Multilinear Projection (FMP) method in terms of estimation
accuracy.

Index Terms—Tensor, Tucker decomposition, Constrained
CPD, Tensor Train, Multilinear Algebra

I. INTRODUCTION

Low-rank tensor decompositions are increasingly used to
solve a variety of difficult problems with multilinear data,
and this in various areas such as signal processing and
telecommunications [1], [2], [3], [4], [S1, 160, 171, 18}, [9f,
hyperspectral image reconstruction [10], [11] and machine
learning [1], [12]], [13]. A popular generalization of the
Singular Value Decomposition (SVD) [14] to tensors is the
Tucker Decomposition [15], [16]], [L7]. Large-scale tensors
suffer from the “curse of dimensionality” [18] as complexity
and storage costs scale exponentially with the order of the
tensor. Recently, tensor networks [4]], [19]], [20] such as the
Tensor Train (TT) decomposition [21] have been introduced
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to mitigate the curse of dimensionality. The TT decomposition
represents a tensor as a cascade of lower-order tensors and
has been exploited in several recent works such as signal
processing applications [22], [23], [24]. This format is very
popular due to its low storage compactness and has a good
trade-off between optimality (with the TT-SVD algorithm) and
numerical stability from an algorithmic point of view. In this
paper, we propose to use the TT decomposition formulation of
the Tucker decomposition [25]] to efficiently estimate the factor
matrices. We go further than [25] by proving that the TT-cores
follow a Constrained Canonical Polyadic Decomposition. This
theoretical result suggests us a new algorithm called TRIDENT
(Tucker Decomposition based on a Tensor Train of Coupled
and constraint CP cores).

Notations: In this paper, we represent vectors, matrices, and
higher-order tensors by lower case bold letters (x), upper
case bold letters (X)) and upper case calligraphic letters (X)
respectively. To indicate an entry, we write x;, . ; . The
transpose, the transpose of the inverse, and the Moore-Penrose
inverse of the matrix X are respectively denoted by XT, X~ T
and XT. The n*" unfolding of a tensor X is written as X' ("),
The identity tensor is written as Zy g where d is the order
and f is the size of the dimensions. The symbols o and ®
denote respectively the outer product between vectors and the
Kronecker multiplication between matrices respectively. The
Khatri-Rao product written as © is defined as the column-
wise Kronecker product [17]. We write the n-mode product
and the ("")-mode product respectively as x, and x7 [17].

II. BACKGROUND

In this section, we provide a few definitions and properties
that will be useful in the formulation of the proposed method.
Definition I: The Tucker decomposition of a (-order tensor X’
of dimensions I7 X ... x I with multilinear ranks {77, ..., T}
is defined as [16]]

X:CX1F1X2F2X3~'~XQFQ7 (1)

where C is a Q-order tensor of size 77 X --- X T, and F,,
is a factor matrix of size I, x Ty, for 1 < ¢ < Q. The CP
decomposition [15]], [26] expression can be interpreted as a
Tucker decomposition with the core tensor being the identity
tensor and the multilinear ranks all equal to a single value
called the canonical rank [17].

Since the CP format is a special case of the Tucker format,
we can rewrite the Tucker decomposition as a CPD. A useful
property of such refactoring is given below.
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Fig. 1: Big picture of the TRIDENT algorithm. Starting from G, and Go_; we can estimate iteratively the Tucker factors and
their associated latent variables thanks to the coupling property of the TT-cores.

Property I: Defining Y = reshape(I.; (a,b,c)) with ab = ¢,
as a reshaping of the identity matrix into a 3-order tensor, we
have [27]]

Y= IS,ab X1 q)a,b X2 ‘I’a,b )

with ‘Ila,b =I,® ]_z € Re*ab and (I)a,b = 1}; ®I, € Rbxab,

Definition 2: The Tensor-Train decomposition of a tensor X
with TT-ranks {R1, ..., Rg_1} is defined as [21]

X =Gy %3G x3G3 X} -+ x5 Gg (3)

where G; of dimensions R;_1 x [;_1 X Rj, for 1 <¢ < Q,
are called the TT-cores, with Ry = Rg = 1.

III. NEW LINK BETWEEN THE TUCKER AND THE
TENSOR-TRAIN DECOMPOSITION

A. Established link

The proposed method relies on the relationship between the
Tucker decomposition and the TT established recently in [25]],
where a high-order tensor estimation problem is solved via
trains of coupled third-order CP and Tucker tensors.

Theorem I: Consider a tensor X’ of dimensions [; X - - -x I ex-
pressed in a Tucker format with multilinear ranks {77, ..., T }.
The set of TT-cores {G,} associated with the TT decomposi-
tion of X’ are given by [25]

Gy =F M,

Gy=Tyx1 M1 xaFg xs M, T (1<q<7q),

Gg = Cq x1 Mg—1 x2 Fg x3 M7 ", @
Gy =Ty x1 M1 x2Fgoxa Myt (4<¢<Q),

Go =M F;".

The TT-ranks associated with the TT-cores are defined as
R, = min (H?Zl T;, HZQ:qH Ti), with g being the smallest

q that verifies [[}_, T; < H?: 4+1 Li- The factor matrices are
denoted by F, and have dimensions I, x Tj,. The matrices M,
are change-of-basis matrices of dimensions R, X I?, which are
latent variables shared between neighboring TT-cores. Finally,
Ty and 7_'q are proper reshapings of the identity matrix to
match the dimensions of the related factors in Eq. (5). This
relationship leads to the FMP algorithm [25], which allows
estimating the Tucker factors using the TT decomposition.

B. The coupled constrained CP formulation
In order to estimate all the Tucker factors using the equiv-

alence between Tucker and TT decomposition, we propose
to reformulate this equivalence using Property 1. The tensors
T4 and 7, from Eq. are reshapings of the identity matrix
defined as

7:1 = reshape(IRq; (Rq—lvaRq)) (1<qg<q), )

T, = reshape(In,; (Ry—1, T, Ry))  (7<q<Q).

Using Theorem 1 and Eq. (5), we can decompose the TT-
cores in Eq. @ as constrained CPDs, the structure of which
are defined by the following lemma.

Lemma 1: Using the constrained CP formulation of Property 1,
we can rewrite the second and fourth equations (for 1 < ¢ < ¢
and § < q < Q, respectively) of the TT-cores defined in
Theorem 1 as

Gy =TIsr, X1 Mq_1¥p, 1, x2 F®p, 1, xs M, "

—T
Qq :Ig,Rq X1 Mq,1 X9 Fq(I)Rq,Tq X3 Mq ‘I’Rq,Tq'

Proof. Using Property 1, we can rewrite 7, and 7, as

Ty =13, X1 ®Pr,_, 1, X2 YR, _, T, ©)
Ty =I3,r, X2 ®Rr, 1, X3 YR, T,

We can obtain the above two expressions for G, (for 1 <

g < qgand ¢ < q < @, respectively) by substituting Eq.
(6) into Eq. @) using the fact that the order of the mode-n
multiplication is irrelevant. O

IV. ESTIMATION SCHEME
A. TRIDENT algorithm

In this section, we introduce a new algorithm which effi-
cently solve the problem of interest

Gy — F:M; %

min
Fi,..,Fo,My,...Mqg_1

q—1

§ -T2
+ ng 7I3aRq X1 Mq_l‘Iquflqu X2 F‘Z@qulqu X3 Mq HF

q=2

+11G7 — Cq <1 Mgy x2 Fg x3 M7
Q-1
+ Z 1Gg — Ts.r, X1 Mg_1 X2 Fy®p, 1, xa M " Wp 1 |7
q=q+1
-T2
T1Go —Mg-1Fg [F-
An overview of the algorithm is depicted in Figure

Using the formulation of the equivalence between the TT
and Tucker decomposition and incorporating Lemma 1, the
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Fig. 2: Zoomed picture of the TRIDENT algorithm for the
first three TT-cores.

Tucker factor matrices are estimated after the TT-SVD step.
We first estimate both Fy and Fg_; as well as the latent
variables associated with those factors using an alternating
least squares method (ALS) operating on the corresponding
CCPD-decomposed TT-cores. Then, by propagating iteratively
the latent matrices, we estimate the remaining factors using
either a Least Squares (LS) method or an ALS. For 1 < ¢ < g,
the matrix factors of the TT-cores are found via a constrained
Tri-ALS estimation scheme, each iteration being composed of
the following estimation steps

1
qul == ?

q

GO (M0 F,@n, 1)) k1,

1 2 —-T ™ o1
F, = m(;,g ) ((Mq OM,1%g, 1) ) L o,
t
M ! G(3) ((FqQRq*I’Tq © qul‘I’quth)T) ’
(7N
where we have used the fact that q’a,blllgb = bl, and
P, b<I>a » = alp. Similarly, for ¢ < ¢ < @Q, we get

n
Mq—l _ G(l) ((M;T‘I’RQ,TQ ® Fq(I)quTq)T) 3

T
F,= G (M "¥r, 1, ©M,1)' ) @F 10 8)

q+1

t
M;T B EG((IP’) ((qu)qu,Tq © qul)T) ‘I”II‘%q)Tq'
Applying this Tri-ALS estimation scheme to the TT-cores
Gy and Gg_; allows us to estimate the associated Tucker
factors and latent matrices. We can then propagate these latent
matrices using the coupled LS criterion to perform a Bi-
ALS estimation on other cores (following the Tri-ALS scheme
described above but skipping the propagated change-of-basis
matrix). The propagation of the latent matrices is illustrated
in Figure 2] As we do not have a theoretical convergence
[(F)—(F=1) || e
I{(Fi=1)r
where ¢ is the current iteration and (-) the spanned subspace,
to declare convergence. The value of A is set experimentally to
optimize the trade-off between the number of iterations and the
reconstruction error. Flnally, a SVD is applied to the second
unfolding of Gg <1 M 1 X 3Mq, and compute the left singular

vectors as the Tucker factor F A summary of the complete
estimation scheme is provided in Algorithm

guarantee for ALS, we use the criterion A =

B. Computational Complexity

The computational complexity of our algorithm is directly
related to that of the TT-SVD, which is of order O(T'I?) [25]

Algorithm 1: TRIDENT

input : Q-order tensor X' and multilinear ranks
{T1,....To}
output: Factor matrices F; and core tensor C of the

Tucker decomposition

1 Compute ¢ and the TT-ranks using the multilinear
ranks and Theorem 1.
2 Compute the TT decomposition:
{G1,G2,...,Go-1,Gq} = TT-SVD(X)
3 Compute the factors using the ALS described in
Eq. (7) and (8):
{Ml’ f‘g ,AMQ} iTI‘l-ALS(gg)
{Mq-2,Fg-1,Mq_1} = Tri-ALS(Gg-1)
for3<¢<qg—1do
| {Fy.M,} = Bi-ALS(G,. M)
end
for Q—1>qg>qg+1do
‘ {qu Mq} = Bi‘ALS(gqv Mq—l)
end
F1 = G1M1
FQ = GQMQ 1
4 Compute Fj; as the left singular bases of the second
unfolding of G x1 M1 x3 Mj.
5 (Optional) Compute the core tensor

C=X x1F] x5 ... xg FL x gy .. xg Fh;

Qa

with T the largest multilinear rank, I and () represent re-
spectively the largest dimension and the order of the original
tensor. As the order of the tensor increases the complexity of
the ALS becomes insignificant compared to that of the TT-
SVD and thus both FMP and TRIDENT have similar com-
putational complexities. On the other hand, the computational
complexities of the HOOI and the HOSVD scale linearly by
an additional factor @, resulting in O(QTI% + Ny, QT%T1)
and O(QTI®), respectively.

C. Remarks on uniqueness

For 1 < ¢q¢ < ¢, the model considered in Lemma 1
does not enjoy the essential uniqueness property of
the CPD. By adopting the analysis made in [27], we
can estimate the factors of the constrained CPD up to
the ambiguity relationship Ty, = (Tm,,®T Fq)_l,
so that Fy = F,Tp,, M, = M, T, My 1 = M, 1Ty, ..
Indeed, the Tucker model has no essent1al uniqueness but only
uniqueness up to a change-of-basis matrix, which is the case
in the considered model. Let F be a generic Tucker factor and
® its associated contraint matrix, we define F = F®T. We
have F® = RFT . The projector on F is given by

~ - 1
F®(F®)! = R(FTy) = (FTp)' = FT-T,'Ff = FFT.

V. NUMERICAL SIMULATIONS

In order to assess the performances of the TRIDENT
algorithm, we compare it with the HOOI [28]], HOSVD [29]
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Fig. 3: Normalized reconstruction error of the different meth-
ods as a function of the SNR.

and the FMP [25]] for three different experiments. These
experiments are carried out for (Q-order tensors, where @
ranges from 4 to 9. We look at how closely the algorithm
is able to reconstruct the original tensor. In our experiments,
we generate the original tensor as X = T/||T||r+oB/||B||F,
where 7T is the reconstructed tensor from a single realization
of a zero-mean Gaussian distribution of the Tucker factors
and B is an Additive White Gaussian Noise (AWGN). We
consider hypercubic tensors with dimensions equal to 8 and
multilinear ranks all equal to 2. The results are averaged over
300 independent Monte Carlo runs. We point out that similar
experiments have been carried out for several dimensions
(ranging from 6 to 10) and ranks (ranging from 2 to 4) and we
observed the same conclusions (the results are not displayed
in this paper due to space limitations). The code E] was written
in a non-optimized way to ensure a fair comparison.
Reconstruction experiment: We first compare the reconstruc-
tion error for different SNRs, defined as SNR=—101log;,(c?).
To measure the reconstruction error, we consider the normal-
ized reconstruction error defined as ||X — X|#/||X| . The
results are shown in Figure[3|considering an 8-order tensor. We
can observe that the proposed method achieves similar results
to the HOOI and HOSVD while performing better than the
competing FMP method at higher SNRs (over 30dB).

Time complexity: In a second experiment, we verify our
computational complexity analysis by evaluating the time
complexity with an increasing tensor order. The results are
averaged over 300 runs with ranks and dimensions as stated at
the beginning of Section [V] As shown in Table[l] the proposed
method asymptotically converges to the results of FMP, while
the time complexities of HOOI and HOSVD grow much faster.
These results consider an SNR=30dB, but the impact of the
noise on the time complexity is only significant for lower-
order tensors (6-order or less). For higher-order tensors, the
time complexity of the TT-SVD is the main limiting factor.
For a 9-order tensor, we observe a 6-fold difference between
the HOSVD and TRIDENT. When comparing HOOI and
TRIDENT, an 8-fold is observed, which is consistent with
our analysis considering the non-dominating terms.

Uhttps://gitlab.univ-lille.fr/maxence.giraud/trident

Tensor Order ‘ HOOI HOSVD FMP TRIDENT
6 0.19 0.071 0.031 0.037
7 1.48 0.91 0.216 0.224
8 13.6 10.2 1.95 1.96
9 148 106 18.2 18.3

TABLE I: Comparison of time complexity (in s) with increas-
ing order of the tensor with an SNR set at 30dB, an 8-order
hypercubic tensor with dimensions equal to 8, and multilinear
ranks all equal to 2.
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Fig. 4: Boxplots of the number of iterations for ALS conver-
gence for different values of SNR.

Convergence of ALS: We finally investigate the convergence
of the ALS stage of our algorithm. More specifically the
number of steps until convergence depends on the SNR for
both the Tri-ALS and all the Bi-ALS. For these experiments,
we used the same conditions as stated at the beginning of
section |V} as well as an 8-order tensor for the original tensor.
The stopping criterion for the ALS is set to A = 10~% which
was experimentally verified as the best choice considering
the tradeoff between reconstruction error and execution time.
The results are reported in Figure ] We can see that the
convergence is achieved within tens of iterations (or even
faster) while exhibiting a small variance. We observe a SNR
higher than 20dB the convergence is achieved within less
than 20 iterations, while for a SNR higher than 5dB, 40
iterations are enough for convergence. Moreover, the variance
of the convergence speed (measured in terms of the number
of iterations) yields a confident result.

VI. CONCLUSION

This paper proposed a new JIRAFE-like algorithm to com-
pute the Tucker decomposition with low storage and compu-
tational costs. The curse of dimensionality can be mitigated
by the proposed TRIDENT estimator, which is based on a
new algebraic equivalence between the Tucker model and a
structured Tensor Train (TT) decomposition. In particular, we
prove that for a @-order tensor, Q — 3 TT-cores follow a
Constrained CPD model. Our numerical simulations show that
the TRIDENT estimator has similar estimation accuracy for
most of the SNR range as the HOOI and HOSVD methods
with considerably lower time complexity. Perspectives include
an adaptation of the proposed algorithm by replacing the TT-
SVD with the TT-HSVD to obtain a faster implementation
[30] as well as resorting to enhancements to the iterative part
of the algorithm using the approaches proposed in [31], [32].
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