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LM-VC: Zero-shot Voice Conversion via Speech
Generation based on Language Models
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Abstract—Language model (LM) based audio generation
frameworks, e.g., AudioLM, have recently achieved new state-of-
the-art performance in zero-shot audio generation. In this paper,
we explore the feasibility of LMs for zero-shot voice conversion.
An intuitive approach is to follow AudioLM – Tokenizing speech
into semantic and acoustic tokens respectively by HuBERT and
SoundStream, and converting source semantic tokens to target
acoustic tokens conditioned on acoustic tokens of the target
speaker. However, such an approach encounters several issues:
1) the linguistic content contained in semantic tokens may get
dispersed during multi-layer modeling while the lengthy speech
input in the voice conversion task makes contextual learning
even harder; 2) the semantic tokens still contain speaker-related
information, which may be leaked to the target speech, lowering
the target speaker similarity; 3) the generation diversity in the
sampling of the LM can lead to unexpected outcomes during
inference, leading to unnatural pronunciation and speech quality
degradation. To mitigate these problems, we propose LM-VC,
a two-stage language modeling approach that generates coarse
acoustic tokens for recovering the source linguistic content and
target speaker’s timbre, and then reconstructs the fine for
acoustic details as converted speech. Specifically, to enhance
content preservation and facilitates better disentanglement, a
masked prefix LM with a mask prediction strategy is used for
coarse acoustic modeling. This model is encouraged to recover the
masked content from the surrounding context and generate target
speech based on the target speaker’s utterance and corrupted
semantic tokens. Besides, to further alleviate the sampling error
in the generation, an external LM, which employs window
attention to capture the local acoustic relations, is introduced
to participate in the coarse acoustic modeling through shallow
fusion. Finally, a prefix LM reconstructs fine acoustic tokens
from the coarse and results in the converted speech. Experiments
demonstrate that LM-VC outperforms competitive systems in
speech naturalness and speaker similarity.

Index Terms—voice conversion, zero-shot, language modeling

I. INTRODUCTION

VOICE conversion (VC) aims to convert speech from
a source speaker to that of a target speaker without

changing the linguistic content. VC’s main rationale is to
decompose source speech into separated components, includ-
ing speaker timbre, linguistic content, and speaking style.
Then the linguistic content and speaking style are combined
with the target speaker’s timbre to generate the converted
speech. Training a typical VC system desires at least a sizable
amount of the target speaker’s speech. In contrast, zero-
shot VC or any-to-any VC focuses on converting any source
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speech to that of any desired speaker with only one utterance
available from the speaker, which is more practical for real-
world applications. But since only one target speaker utterance
is available, decoupling speech components and meanwhile
maintaining target speaker timbre becomes more challenging.

One intuitive approach is to leverage a speaker verifica-
tion (SV) model to extract the speaker representation [1]–
[3], while automatic speech recognition (ASR) [4] or self-
supervised learning (SSL) model [5]–[8] are employed to
extract the linguistic content. Some studies [2], [5] also use
signal perturbation techniques to alter speech utterances to
make it speaker irrelevant before content extraction. Instead
of attempting speech disentanglement prior to training the
VC model, many studies rely on a specifically designed
disentanglement approach to reduce the correlation among
different speech components, including designs on compli-
cated neural structures [9], [10], loss functions [11], [12], and
training strategies [13], [14]. However, the current zero-shot
VC approaches still generalize poorly to unseen speakers with
low speaker similarity, mainly due to the inevitable trade-off
during the speech disentanglement process and the model’s
limited capacity on leveraging large-scale speech data.

Recently, language models (LM) [15]–[18] trained on large-
scale datasets have achieved impressive performance in zero-
shot audio generation. A popular paradigm is first to tokenize
audio into semantic and acoustic tokens respectively by a self-
supervised learning (SSL) model and a neural codec, where
the SSL model extracts the linguistic content from audio
while the audio codec reconstructs high-quality audio at very
low bitrate, and then the discrete tokens enable the audio
generation task to benefit from the powerful large language
models. As a typical approach, AudioLM [15] leverages
semantic and acoustic tokens as audio representations and
introduces a three-stage language modeling process for audio
generation. Specifically, using semantic tokens of a short
utterance as a prompt, AudioLM generates the continuation of
semantic tokens, which is then used as a conditioning signal
for predicting coarse acoustic tokens and further restoring the
fine acoustic details. Variants of AudioLM have also shown
remarkable performance for zero-shot music generation and
text-to-speech (TTS) [16]–[18].

In this letter, we explore the feasibility of language models
in zero-shot VC. An intuitive way is to follow AudioLM
– applying coarse and fine acoustic modeling to form a
variant. However, such a straightforward LM approach en-
counters several issues in voice conversion: 1) the linguistic
content contained in semantic tokens may get dispersed as
the network deepens during multi-layer language modeling
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while the lengthy speech input makes contextual learning even
harder; 2) the semantic tokens extracted by HuBERT [19] still
contain speaker-related information, which may be propagated
to the converted speech and lead to low speaker similarity;
3) the inherent generation diversity in the sampling of LM
inevitably leads to unnatural pronunciation and even speech
quality degradation. To address these issues, we propose a
language model-based VC approach (LM-VC) – a two-stage
framework that first generates coarse acoustic tokens for recov-
ering content and speaker timbre and then reconstructs the fine
acoustic details as converted speech. Specifically, to maintain
linguistic content and facilitate better speech disentanglement,
we use a masked prefixed language model (MPLM) with a
mask prediction strategy for coarse acoustic modeling. This
model is encouraged to recover masked semantic tokens based
on the context and predict target speech given the target
speaker’s utterance and the corrupted semantic tokens, thereby
implicitly creating an information bottleneck on the source
speech to reduce the source speaker information. To further
alleviate the sampling error in the generation process, we
integrate an external language model (ELM) that employs
window attention [20] to better capture the local context
among acoustic tokens. The ELM collaborates with the MPLM
through shallow fusion [21] to generate target speech. Finally,
the fine acoustic tokens are reconstructed from the coarse
ones in a non-autoregressive manner using a prefix LM [17].
Experiments and ablations on large-scale speech data show
that LM-VC is superior to YourTTS [22] and an AudioLM [15]
baseline in both speaker similarity and speech naturalness.

II. PROPOSED APPROACH

A. Overview
As shown in Fig. 1(a), LM-VC incorporates three LMs: an

MPLM, an ELM, and a PLM. Before language modeling, Hu-
BERT [19] and SoundStream [23] are used to represent speech
as semantic tokens s = {s1, s2, ...sTs

} and acoustic tokens
a = {a11, a21, ..., aL1 , a12, ..., aLTa

}, respectively. Here, Ts and Ta

denote the sequence length, and L represents the number of
quantizers in SoundStream. Similar to AudioLM [15], LM-VC
sequentially performs coarse and fine acoustic modeling.

Coarse acoustic modeling: The MPLM adopts the semantic
tokens {s, s̃} from the source and target speaker speech, as
well as the first-layer acoustic tokens ã1 from target speaker
speech. It autoregressively generates the acoustic tokens a1

of target speech, following the formulation p(a1t |s̃, s, ã1,a11:t).
In this process, the ELM performs p(a1t |a1t−w:t) with window
length w and collaborates with the MPLM to generate speech.

Fine acoustic modeling: Taking the first-layer acoustic to-
kens as input, the PLM non-autoregressively generates fine
acoustic tokens layer by layer. The semantic and acoustic
tokens from the source speech and target speaker are also
regarded as the prompt of the PLM. This process can be
formulated as p(al|s̃, s, ã,a1:l−1, l) with l ∈ [2, L]. Following
the NAR model in VALL-E [17], the PLM is achieved by
a multi-layer Transformer [24] with bidirectional attention,
leading to fast and high-quality speech reconstruction.

Finally, SoundStream reconstructs waveform from the pre-
dicted acoustic tokens. In the two-stage modeling, coarse
acoustic modeling plays a crucial role in recovering linguistic
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Fig. 1. The architecture of LM-VC. (a) The LM-VC model. (b) The masked
prefix language model. (c) The external language model.

content and speaker timbre, while fine acoustic modeling
contributes to the acoustic fine details. In LM-VC, we put
more effort on coarse acoustic modeling as keeping the source
content and the target speaker timbre is a challenging task
in zero-shot VC. The MPLM and ELM, designed for coarse
acoustic modeling, are introduced in the following sections.

B. Masked Prefix Language Model

As just mentioned, obtaining high speaker similarity and
preserving linguistic content are essential goals of the zero-
shot VC. However, accomplishing these goals in LM is
challenging since the linguistic content may get lost as the
network deepens during multi-layer modeling, and the lengthy
speech input makes learning contextual information harder,
which causes unnatural pronunciation. Furthermore, the se-
mantic tokens still contain speaker-related information. And
this inadequate decoupling causes the model to capture speaker
timbre from both the target speaker speech and the source
speech, thereby leading to low speaker similarity. Inspired by
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the advances in language modeling [25], [26], we introduce a
masked prefix language model (MPLM) to address this issue.

As in Fig. 1 (b), MPLM is achieved by a multi-layer
Transformer with two types of attention masks. To enhance
the model’s ability to learn contextual information and main-
tain the source content throughout the multi-layer modeling,
MPLM employs a mask prediction strategy to restore masked
tokens based on the surrounding context. Specifically, given a
sequence of semantic tokens s = {s1, s2, ...sTs

}, we randomly
select several tokens as start indices at a ratio r, and spans of l
steps are masked by [M] token. After masking, MPLM takes
the corrupted semantic tokens smask as input and recovers
the masked tokens. The right part of Fig. 1 (b) illustrates the
self-attention mask used in MPLM. For the semantic tokens,
a bidirectional attention mask allows them to attend to each
other, enabling MPLM to capture contextual information from
both directions. The negative log-likelihood loss, computed
over masked tokens, can be defined as:

Lmask = − log
∏
t∈M

pMPLM(st|smask, t). (1)

For the acoustic generation, we employ the mask prediction
strategy to make the model capture speaker timbre exclusively
from the target speaker’s speech, while extracting content from
the corrupted semantic sequences. This strategy encourages the
model to learn better contextual information and implicitly
creates an information bottleneck in the semantic tokens to
facilitate disentanglement. Moreover, during training, we do
not explicitly use a speech clip as the acoustic prompt. Instead,
MPLM leverages the previous acoustic sequence a11:t−1 as
acoustic prompts to capture fine-grained speaker information
and autoregressively generate a1t . In this process, we use
unidirectional attention to achieve a left-to-right LM objective,
where the acoustic token a1t only attends to the previous
sequence a11:t−1 and the semantic prefix smask. The loss is

Lar = − log

Ta−1∏
t=0

pMPLM(a1t |a11:t−1, smask, t), (2)

where Ta represents the sequence length of acoustic tokens.
During training, the semantic recovery and acoustic generation
are performed simultaneously as Lmask + Lar.

C. External Language Model

In the generation process of MPLM, the generation diversity
inherent in the sampling of the language model sometimes
leads to unexpected results. This issue can be further amplified
by autoregressive propagation, resulting in unnatural pronun-
ciation and even speech quality degradation. Lack of guidance
in the generation process, MPLM is hard to prevent this issue.
Inspired by the phenomenon observed in contrastive predictive
coding (CPC), previous studies [27], [28] have shown that
adjacent speech frames within a speech segment of a spe-
cific length share the same local context, such as phoneme-
related information. Such characteristic allows speech frames
to be predicted by frames from previous time steps. As
shown in Fig.1 (c), we introduce an external language model
(ELM) to capture the local acoustic relations and provide
contextual guidance during the generation process. With a
similar architecture to the MPLM, the ELM employs window

attention [20] with shifted window to encode local contextual
information and predict the distribution p(a1t |a1t−w:t−1) with
window length w. The objective of ELM can be defined as:

Lwar = − log

Ta−1∏
t=0

pELM(a1t |a1t−w:t−1, t). (3)

During training, we separately train the MPLM and ELM. In
inference, the ELM collaborates with the MPLM to generate
acoustic tokens conditioned on the local context of the pre-
ceding acoustic tokens. This collaboration is achieved through
shallow fusion [21] with fusion weight λ:

a1t = argmaxa1
t
[log pMPLM(a1t |a11:t−1, ã

1, s, s̃, t)

+λ log pELM(a1t |a1t−w:t−1, t)].
(4)

Note that shallow fusion is wildly used in ASR [29] to improve
linguistic correctness during acoustic decoding.

III. EXPERIMENTS
A. Experimental Setup

1) Corpus: A mixed dataset comprising 1,400 hours of
LibriTTS [30] and an internal dataset are used to train LM-VC
and the SoundSteam codec [23]. To extract semantic tokens,
we incorporate an open-source HuBERT1, which is trained on
LibriSpeech [31]. For zero-shot testing, a set of 500 testing
pairs is selected from VCTK [32], CMU Arctic [33], and
EMIME [34], each with a source and target speaker utterance.

2) Implement details: The SoundStream codec has 6 quan-
tizer layers with a 1024 codebook size, representing a 24KHz
waveform in 12.5ms frame length. The HuBERT compresses
a 16KHz waveform into semantic tokens with 20ms frame
length. For LM-VC, we employ the same decoder-only Trans-
formers for MPLM, ELM, and PLM, with 12 layers, 16 atten-
tion heads, embedding dimension of 1024, feed-forward layer
dimension of 4096, and dropout of 0.1, as in AudioLM [15].
During training, the training length is capped at 10s. MPLM
and PLM are trained using 8 A100 80G GPUs with a batch
size of 12 per GPU for 600K steps, while ELM has a batch
size of 20. We use the AdamW optimizer with a learning rate
of 5 × 10−4 for MPLM and ELM and 1 × 10−4 for PLM.
Exponential decay updates the learning rate after each epoch,
using a decay ratio 0.986. In MPLM, mask ratio r ranges from
0.02 to 0.04, and span l is set to 10. Window length w of the
ELM is set to 20, whose temporal granularity is 250ms. And
the fusion weight λ is set to 0.3.

3) Comparison systems: Two representative VC systems
are compared. We first implement a variant of AudioLM [15]
for VC (AuidoLM-VC), which uses semantic and first-layer
acoustic tokens for coarse acoustic modeling. For a fair com-
parison, AudioLM-VC and LM-VC use the same PLM for fine
acoustic modeling and both are trained on the same dataset. We
also include a recent state-of-the-art VC system YourTTS [22]
with an open-source checkpoint as another comparison system.

4) Evaluation metrics: The mean opinion score (MOS)
subjectively measures speech naturalness (NMOS) and speaker
similarity (SMOS). We randomly select 120 testing pairs for
subjective evaluations, involving a group of 15 listeners. For
objective evaluations, a neural network-based system [35] is
used to measure speech quality (P-QMOS). Word error rate

1https://github.com/bshall/hubert
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TABLE I
RESULTS OF SUBJECTIVE AND OBJECTIVE EVALUATIONS. NMOS AND

SMOS ARE CALCULATED WITH 95% CONFIDENCE INTERVALS

Model NMOS (↑) SMOS (↑) P-QMOS (↑) WER (↓) ACC (↑)
GroundTruth - - 4.56 1.64 1.000
YourTTS 3.57±0.09 3.35±0.10 4.02 2.16 0.640
AudioLM-VC 3.63±0.09 3.67±0.09 4.29 2.37 0.919
LM-VC 3.90±0.09 3.82±0.10 4.32 2.13 0.951

w/o MPLM 3.83±0.10 3.69±0.09 4.31 2.31 0.926
w/o ELM 3.86±0.09 3.73±0.08 4.32 2.20 0.942

(WER) measured by an ASR model2 indicates the speech
intelligibility. Following previous work [6], speaker accuracy
(ACC) is calculated by an SV model [36] to determine if
the converted speech matches the target speaker. Converted
samples can be found in https://kerwinchao.github.io/lmvc.

B. Experimental Results
1) Subjective and objective results: As presented in Table I,

compared with AudioLM-VC, the proposed model LM-VC
achieves superior results for speech naturalness while getting
higher P-QMOS and better WER. This indicates that the
proposed model effectively preserves the linguistic content of
source speech and produces natural speech. From the SMOS
results, it can be found that LM-VC is effective in capturing
the target speaker’s timbre in the zero-shot VC task. Similar
results are observed in terms of ACC. Additionally, LM-
VC makes an obvious improvement compared to YourTTS
regarding speech naturalness and speaker similarity. The P-
QMOS and ACC also indicate the superiority of LM-VC.

Further assessment of LM-VC is conducted with ablations
on the MPLM and ELM, as shown at the bottom of Table I.
Specifically, we replace the MPLM with the autoregressive
prefix LM, as in AudioLM [15], forming the model w/o
MPLM. We observe a noticeable decrease in all evaluation
metrics when the MPLM is discarded. This indicates that
the MPLM, trained with mask prediction behavior, effectively
enhances the zero-shot performance in capturing target speaker
timbre while maintaining the source linguistic content. Fur-
thermore, excluding the ELM from the inference process in
the model w/o ELM leads to a performance decrease in both
NMOS and SMOS, highlighting the beneficial role of ELM in
zero-shot VC. The objective metrics also report similar results.
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Fig. 2. Validation of ELM under different window lengths and fusion weights

2) Validation of ELM: To examine the efficacy of ELM
in LM-VC, we implement multiple ELM with varying win-
dow lengths (w = 10, 20, 30, 40, 50) and fusion weights
(λ = 0.1, 0.3, 0.5, 0.8, 1). The objective results in Fig. 2 show
that LM-VC initially improves across all three aspects as the

2https://github.com/wenet-e2e/wenet/tree/main/examples/librispeech/s0

P-QMOS WER ACC
1 4.23 2.4 0.579
2 4.25 2.47 0.824
3 4.29 2.35 0.947
4 4.29 2.33 0.94
5 3.95 2.4 0.95
6 3.25 2.57 0.917
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Fig. 3. Zero-shot performance under the different duration of speaker prompt

window length increases, but subsequently begins to decline.
When considering different fusion weights, we observe subtle
variations in the trend. Additionally, LM-VC achieves optimal
performance under distinct fusion weights. Notably, the setup
of (w = 20, λ = 0.3), which covers the common range of
consonant-vowel syllables [37], exhibits the best performance.

3) Varying duration: We further evaluate the zero-shot per-
formance using different duration of target speaker utterances
(1 ∼ 6s). As depicted in Fig. 3, the results are generally
affected by the duration of the speaker speech. For the extreme
cases, e.g., 1 ∼ 2s, the model exhibits poor performance in
WER and ACC due to insufficient prompt information. But
from 3 to 4s, the objective scores noticeably improve in terms
of speech intelligibility and speaker accuracy. Beyond 5s, the
P-QMOS and WER get worse. This can be attributed to the
long prompt (9 ∼ 12s) composed of the source and speaker
speech. During speech generation of LM-VC, the input length
can reach 1170∼1569 tokens, which is close to or exceeds
the maximum training length (10s, 1300 tokens). With bigger
GPU memory or specific-designed structures [38], [39], this
problem may be alleviated with the increased training length.
Meanwhile, leveraging longer prompt more effectively [40] is
also a promising solution to break such length restriction.

IV. CONCLUSIONS

In this letter, we propose an LM-based zero-shot VC.
Specifically, LM-VC adopts a two-stage framework. For coarse
acoustic modeling, an MPLM is adopted in a mask prediction
manner to enhance context learning and facilitate better dis-
entanglement. Additionally, an ELM collaborates with MPLM
to generate the target speech while ensuring speech generation
stability. Finally, a non-autoregressive PLM reconstructs the
fine acoustic tokens from the coarse acoustic tokens. Experi-
ments demonstrate the superiority of LM-VC. The proposed
LM-VC can easily clone desired speaker timbre with only 3
seconds of speech, simplifying any-to-any VC for applications
like voice assistants, dubbing, and other speech generation
scenarios. But it may cause potential risks in misuse, such as
generating fake audio impersonating a specific speaker [41].

We have to point out that the current zero-shot VC ap-
proaches mainly consider the accurate delivery of the speaker
timbre while lacking the modeling of other important speaker
characteristics, such as accent and prosody, which are critical
for identifying specific speakers. Besides, the out-of-domain
problem still exists. Even trained with 60k hours of speech,
LM-VC cannot ensure high speaker similarity for utterances
with accents, strong emotions, or unseen recording environ-
ments, a similar limitation also pointed out in VALL-E [17].

https://kerwinchao.github.io/lmvc
https://kerwinchao.github.io/lmvc
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