Loading [a11y]/accessibility-menu.js
Training a Radial Basis Function Network Under Transformed Probability Measure | IEEE Journals & Magazine | IEEE Xplore

Training a Radial Basis Function Network Under Transformed Probability Measure

Publisher: IEEE

Abstract:

This letter deals with robust estimation of the output layer weights in a radial basis function network (RBFN) with predetermined hidden layer parameters. Specifically, w...View more

Abstract:

This letter deals with robust estimation of the output layer weights in a radial basis function network (RBFN) with predetermined hidden layer parameters. Specifically, we presume a RBFN regression model interfered by non-Gaussian impulsive noise. Under this framework, a new robust extension of the least-squares-estimator (LSE) is introduced. This estimator, called measure-transformed LSE (MT-LSE), operates by applying a transform to the joint probability measure associated with reshaped versions of the input-target training data pairs. The considered transform is generated by a non-negative function, called MT-function, that weights the data points. We show that proper selection of the MT-function substantially improves the estimation accuracy in the presence of impulsive noise, while maintaining the implementation simplicity of the standard LSE. The performance advantage of the MT-LSE, comparing to the LSE and other robust alternatives, is illustrated in a simulation study focusing on time-series prediction.
Published in: IEEE Signal Processing Letters ( Volume: 30)
Page(s): 1567 - 1571
Date of Publication: 12 October 2023

ISSN Information:

Publisher: IEEE

References

References is not available for this document.