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MirrorDiffusion: Stabilizing Diffusion Process in
Zero-shot Image Translation by Prompts

Redescription and Beyond
Yupei Lin, Xiaoyu Xian, Yukai Shi†, and Liang Lin, Fellow, IEEE

Male DogFemale Foxw/o Glasses w/ Glasses

Fig. 1: Without any supervision, MirrorDiffusion realized three zero-shot image-to-image translations: w/o glasses → w/ glasses,
Male → Female and Fox → Dog.

Abstract—Recently, text-to-image diffusion models become a
new paradigm in image processing fields, including content
generation, image restoration and image-to-image translation.
Given a target prompt, Denoising Diffusion Probabilistic Models
(DDPM) are able to generate realistic yet eligible images. With
this appealing property, the image translation task has the
potential to be free from target image samples for supervision.
By using a target text prompt for domain adaption, the diffusion
model is able to implement zero-shot image-to-image translation
advantageously. However, the sampling and inversion processes of
DDPM are stochastic, and thus the inversion process often fail to
reconstruct the input content. Specifically, the displacement effect
will gradually accumulated during the diffusion and inversion
processes, which led to the reconstructed results deviating from
the source domain. To make reconstruction explicit, we propose a
prompt redescription strategy to realize a mirror effect between
the source and reconstructed image in the diffusion model (Mir-
rorDiffusion). More specifically, a prompt redescription mecha-
nism is investigated to align the text prompts with latent code at
each time step of the Denoising Diffusion Implicit Models (DDIM)
inversion to pursue a structure-preserving reconstruction. With
the revised DDIM inversion, MirrorDiffusion is able to realize
accurate zero-shot image translation by editing optimized text
prompts and latent code. Extensive experiments demonstrate that
MirrorDiffusion achieves superior performance over the state-
of-the-art methods on zero-shot image translation benchmarks

by clear margins and practical model stability. Our project is
available at https://mirrordiffusion.github.io/

Index Terms—Diffusion Process, Generative Model, Image-to-
Image Translation, Zero-Shot.

I. INTRODUCTION

RECENTLY, text-to-image diffusion model [1] becomes a
new fashion in signal processing fields. With large-scale

pre-training on text-to-image data pairs, Denoising Diffusion
Probabilistic Models (DDPM) have a strong capacity to gen-
erate diverse image content [2]–[4]. Nevertheless, DDPM has
achieved great success in image generation task, it still fail to
achieve a desired performance on image-to-image translation,
especially on zero-shot image-to-image translation.

Image translation [5], [6] aims to transform images from
a source domain to a target domain, such as cat → dog.
This task inherently requires the target domain images for
model adaption, which used to be accomplished by Generative
Adversarial Nets (GAN) [7]–[12]. However, its difficult for
traditional GANs to fully understand the target domain knowl-
edge with limited number of samples, which often lead to the
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(a) Displacement in Diffusion Inversion Process

(b) Latent Code Alignment by Prompts Redescription

Fig. 2: To show displacement effect, the reconstruction process
of typical DDIM work [15] is visualized in Fig.2 (a), which
can be formulated as: z0 → zT → z′0. However, errors accu-
mulate in typical diffusion methods, causing biases in latent
codes [z0, z

′
0] and deviations in [Isource, Ireco]. To align the

latent codes, we propose a prompt redescription mechanism to
realize a mirror effect between the source and reconstructed
image in the diffusion model (MirrorDiffusion).

poor translation quality. DDPM resolves this question by using
a large-scale pre-training with text-to-image data [2]–[4] and
integrating multimodal information like large-scale language
models [13], [14].

Given a target prompt, the diffusion model has the ability to
generate realistic yet eligible content. This attractive property
has considerable potential for realizing the image translation
task with fewer or zero target samples.

To address zero-shot image translation, Pix2Pix-Zero [15]
first adopts the diffusion pipeline. Specifically, Pix2Pix-Zero
measures the distance between source and target domain
sentences by applying a CLIP [16] model. By utilizing that
domain gap between text embedding, Pix2Pix-Zero success-
fully achieves zero-shot image-to-image translation with a
pre-trained Denoising Diffusion Implicit Models (DDIM) [1].
Literally, typical DDIM usually converts the image into latent
code, and then performs a latent code re-sampling w.r.t target
domain prompt to demonstrate zero-shot image translation.
This pipeline is able to generate images of the target domain
without target images. As shown in Fig. 2, the generated
results often deviate from the structure of the source domain,
which violates the structure consistency. To keep the structure
of the generated results consistent with the original content,
many efforts [17], [18] are devoted to investigating the recon-
struction pipeline in DDIM. Prompt2Prompt [17] first recon-

structs the image structure at the early sampling stage with
the original prompt, and then applies a word swap mechanism
to change the prompt for image detail generation. Instruct
Pix2Pix [19] proposes a triple dataset, which contains caption,
edit instruction and edited instruction for image editing. To
keep the structural consistency, Instruct Pix2Pix utilizes a
cross-attention mechanism to ensure the edited image becomes
consistent with the original image. Null-text Inversion [18]
optimizes the null-text embedding for classifier-free guidance
to ensure that the reconstruction results consistent with the
source image. This null-text optimization requires the high
precision of provided text prompts, otherwise, the details of the
generated results will be skewed. SDEdit [20] realizes fidelity
and consistency in the image translation by using stochastic
differential equation (SDE) for image encoding and decoding.
Since the SDE is invertible, the inversion process from noise
to image is naturally realized.

However, the forementioned methods gradually accumulate
displacement during the diffusion and inversion processes,
which makes the reconstructed results gradually deviate from
the source image. As shown in Fig. 2, the reconstructed image
appears a displacement effect, which further affects the accu-
racy of the translation result. To solve the displacement effect
in image reconstruction, we propose a prompt redescription
strategy to realize a mirror effect between the source and
reconstructed image during the diffusion process (MirrorDif-
fusion). Specifically, we address the deviation problem of the
reconstructed image by aligning the text prompts and latent
codes at each time step of the reconstruction process. With
the revised DDIM inversion, MirrorDiffusion obtains accurate
target text embedding and latent code for zero-shot image
translation. Our contributions can be summarized as:

• A prompt redescription mechanism is proposed to ad-
dress the displacement problem of image reconstruction
in DDIM Inversion. With the prompt redescription, we
achieve a reliable yet effective image reconstruction.

• Based on the revised DDIM inversion, we align the latent
code with the text prompt during the diffusion process to
further ensure consistency in zero-shot image translation.

• Extensive experiments demonstrate that MirrorDiffusion
achieves superior performance over the state-of-the-art
diffusion models on zero-shot image translation bench-
marks by clear margins and practical model stability.

II. METHODOLOGY

A. Displacement in Diffusion Inversion Process

In Denoising Diffusion Implicit Models (DDIM) and its
derivatives [1], [15], the sampling and inversion processes [1],
[21] are stochastic, and thus the inversion process often fail to
reconstruct the input as shown in Fig. 2 (a). Specifically, given
a source domain image Isource, we first apply the encoder
Dec(·) of the diffusion model [1] to convert it into a latent
code z0. And then send z0 into DDIM for diffusion, the object
function is as follow:

LDDIM = min
θ

Et∼ U (1,T ) ∥Ngaus − ϵθ (zt, t, c)∥22 , (1)
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Fig. 3: Visualization results. Compared with state-of-the-art diffusion approaches across four tasks, our method excels in
generating highly realistic translation results with excellent structure consistency.

Ngaus ∼ N (0, 1) is Gaussian noise with standard normal
distribution, t is time step in DDIM with a range of [1, T ],
c represents the embedding of a conditional text prompt, ϵθ
is the noise prediction network in DDIM, zt represents the
latent code in high dimensional space after t times of diffusion
process. The physical meaning of Equ. 1 is to minimize the
difference between the noise predicted by ϵθ and the real
distribution standard Gaussian noise.

After DDIM optimization, as show in Fig. 2 (a), we can
input the latent code zT into the DDIM for stepwise sampling
and image reconstruction:

z′T−1 = Sample (ϵθ, zT , cT , T ) , (2)

where the Sample (·) represents the stepwise sampling of
DDIM, ϵθ is the noise prediction network in DDIM.

As shown in Fig. 2 (a), with T steps sampling, we can
convert zT into z′0, and obtain the reconstructed image by:
Ireco = Dec (z′0). However, in the inversion process, ϵθ
may deviate from the standard Gaussian noise, and this dis-
placement will gradually accumulate on

[
ZT , Z

′
T−1, .., Z

′
0

]
,

resulting in an collapse in Ireco.
To show this displacement effect and collapse in Ireco,

we visualize reconstruction process of some typical DDIM
works [1], [15]. As shown in Fig. 2 (a), the diffusion inversion
process realizes the reconstruction by: z0 → zT → z′0. How-
ever, the distribution between [z0, z

′
0] appears a displacement

effect, resulting in a deviation between [Isource, Ireco].

B. Prompts Redescription

To make the reconstruction explicit, we propose a prompts
redescription strategy. Specifically, in the reconstruction phrase

as shown in Fig. 2 (b), we calculate the difference between
the latent codes during inversion and reconstruction as:

Lrewrite = min
θ

Et∼ Uniform (1,T )

∥∥zt−1 − z′t−1

∥∥2
2
, (3)

where the z′t−1 indicates the sampling noise of the
current time step, which is obtained by: z′t−1 =
Sample (ϵθ, zt, crewrite, t). Then, we use the Lrewrite to
implement a redescription toward current text prompt ct as:

crewrite = ct − λ∇cLrewrite, (4)

where ∇c takes the partial derivative on c and obtain gradient
for prompt redescription. According the rewritten text prompt
crewrite, we re-sample zt at each time step in inversion process
as: z′t−1 = Sample (ϵθ, zt, crewrite, t). As shown in Fig. 2 (b),
to our surprise, the prompt redescription mechanism ensures
that [z0, z

′
0], [Isource, Ireco] are firmly aligned after T steps

sampling.

C. Zero-shot Image Translation with MirrorDiffusion

With the prompts redescription mechanism, we can obtain
the aligned combination [crewrite, z

′
0] toward ϵθ. As shown in

Fig. 3, our model can implement zero-shot image translation
by further editing crewrite according to the target domain.

As shown in Fig. 4, we apply CLIP [16] to compute
the domain gap ∆c between the source domain and target
domain. Specifically, the CLIP [16] is used to extract the high-
level features of source domain sentences and target domain
sentences, respectively. And the mean difference, which is
computed along those features, is represented as the domain
gap ∆c.
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Fig. 4: The framework overview of MirrorDiffusion. With the prompt redescription mechanism, our model obtains the firmly
aligned [z0, z

′
0], [Isource, Ireco] combinations. We apply CLIP [16] to compute the domain gap ∆c between the source domain

and target domain for image editing. Specifically, the CLIP [16] is used to extract the high-level features of source domain
sentences and target domain sentences, respectively. And the mean difference, which is computed along those features, is
represented as the domain gap ∆c. Then, we apply the target text embedding crewrite + ∆c for zero-shot image translation
with diffusion inversion process. With T -time inversion, MirrorDiffusion can obtain the corresponding latent code z′0, which
corresponds to Itrans with Dec(·).

As shown in Fig. 4, we then use the updated target text
embedding crewrite +∆c for a latent code sampling as:

z′t−1 = Sample (ϵθ, z
′
t, crewrite +∆c, t) , (5)

where ∆c represents the target domain direction, such as
Dog → Cat. And crewrite is the source domain text embed-
ding, which was firmly aligned by the prompt redescription
mechanism. After T -time sampling, our model can obtain the
corresponding latent code z′0. As shown in Fig. 4, we can
easily obtain translated image with a renewed z′0 as:

Itrans = Dec(z′0), (6)

where Itrans represents the translated image, Dec(·) is an
image decoder [22].

III. EXPERIMENT

A. Datasets and Metric

To evaluate the gap between our model and baselines, we
selected three sub-datasets from the LAION-5B dataset [23]
containing cat, horse and sketch images, each containing 250
images. Subsequently, we formulated the following image
transformation tasks, including, Translate Cat to Dog(C2D-
F), Add Glasses to Cat(C2G-F), Translate Sketch to Oil
Pastel(S2O-F), Translate Horse to Zebra(H2Z-F).

We conducted a comparative analysis of performance dif-
ferences between our approach and several baselines, includ-
ing: SDEdit [20], DDIM [1], InstructPix2pix [19], Pix2Pix-
Zero [15] and NULL-Text inversion [18] methods, across these
datasets.For quantitative quality evaluation, we used CLIP-
ACC [24] ,Structure Dist [25] , Structure Similarity Index
Measure [26] (SSIM) and Learned Perceptual Image Patch
Similarity [27] (LPIPS), which are evaluated in terms of
whether the translation is successful.

B. Implementation details

During the image editing process, we optimize only the
variables in the text rewrite process and the pre-trained stable
diffusion model remains in a frozen state. In this experiment,
we established the weight parameter λ for Lrewtire as 1,

employing the Adam optimizer to update the value of crewrite,
with a learning rate of 0.0001. In this paper, the number of
iterations for the DDIM inversion, as well as for the DDIM
editing sampling and reconstruction sampling are both set
to 60. In the image editing process, we use classifier-free
guidance [28] to predict the noise at each time step. All inputs
and generated results are with a size of 512×512×3.

C. Comparison

As shown in Fig. 3, we compare the visual appearance
of our approach with the baseline models on the four tasks.
It can be seen that SDEdit, DDIM and Instruct Pix2Pix
struggle to maintain appearance consistency, Pix2Pix-Zero
and Null-Text Inversion perform well in terms of general
appearance, but fall short in terms of preserving details and
translation accuracy. In contrast, our method performs well in
both appearance preservation and translation correctness. Our
quantitative evaluation results also achieved the best results. In
Tab. I, the pink cells represent the best results and the orange
cells represent the second-best results. It can be clearly seen
that we achieved the best results in both translation quality
and structure preservation. To demonstrate the effectiveness of
our approach on diverse tasks, we supplement three additional
tasks with different scenarios: w/o glasses → w/ glasses, Male
→ Female and Fox → Dog. The image data for these tasks
are sourced from CelebA-HQ [29] and AFHQ [30]. As shown
in Fig. 1, our method effectively achieves high-quality image
translation in these tasks.

D. Ablation Study

Effects of Lrewrite during reconstruction. As shown in
Fig. 5, we show the attention maps during the reconstruction
process of MirrorDiffusion. To verify the effectiveness of our
method, we show the attention maps of ‘w/ Lrewrite’ and ‘w/o
Lrewrite’. As shown in Fig. 5, without Lrewrite, the attention
map of the cat gradually deviates from itself, leading to a
poor reconstruction result. With the proposed Lrewrite, the
cat’s attention maps center on critical regions and complete a
faithful reconstruction.
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Fig. 5: Attention maps of ‘w/o Lrewrite’ and ‘w/ Lrewrite’ during reconstruction process.

TABLE I: Comparison of quantitative results. We evaluate the results in terms of the four evaluation metrics CLIP-ACC,
Structure Dist, SSIM, and LPIPS, with the pink cells indicating the results of the best performance and the orange cells
indicating the results of the second best performance

C2D-F H2Z-F C2G-F S2O-F

METHOD Clip↑ Structure↓ SSIM↑ LPIPS↓ Clip↑ Structure↓ SSIM↑ LPIPS↓ Clip↑ Structure↓ SSIM↑ LPIPS↓ Clip↑ Structure↓ SSIM↑ LPIPS↓
SDEdit [20] 66.9 0.146 0.441 0.552 78.7 0.223 0.441 0.573 76.9 0.133 0.428 0.566 56.1 0.133 0.502 0.519
DDIM [1] 60.2 0.127 0.637 0.439 72.5 0.159 0.6441 0.491 68.8 0.114 0.589 0.435 53.5 0.122 0.633 0.441

Instruct Pix2Pix [19] 72.5 0.086 0.699 0.275 76.4 0.256 0.455 0.711 74.4 0.155 0.342 0.633 66/3 0.130 0.649 0.485
Pix2Pix-Zero [15] 75.2 0.071 0.718 0.272 78.3 0.106 0.671 0.385 80.3 0.047 0.653 0.246 70.7 0.059 0.741 0.240

NULL-Text-Inversion [18] 74.5 0.081 0.72 0.25 81.6 0.1369 0.625 0.36 83.2 0.054 0.743 0.225 69.7 0.066 0.743 0.248
Ours 77.0 0.04 0.782 0.15 82.1 0.0758 0.722 0.271 83.9 0.024 0.797 0.13 70.7 0.043 0.768 0.176

Input w/o w/

Dog

Add
Glasses

Pastel

Fig. 6: Ablation study of Lrewrite. It can be observed that
Lrewrite plays a significant role in preserving the appearance.
TABLE II: Ablation on Lrewrite. The results show that the
structure can be well preserved with Lrewrite.

C2G-F
Clip↑ structure↓ SSIM ↑ LPIPS ↓

w/o Lrewrite 82.6 0.055 0.729 0.255
w/ Lrewrite 83.9 0.024 0.797 0.132

Effects of Lrewrite during editing. To show the effect
of Lrewrite during editing, we present a comparison between
the results obtained using ‘w/ Lrewrite’ and ‘w/o Lrewrite’.
As depicted in Fig. 6, the differences between these two
approaches are clearly visible. Without the use of Lrewrite,
the edited results are difficult to effectively preserve the orig-
inal appearance. Conversely, when Lrewrite is employed, the
results show improved preservation of the original appearance
while accomplishing the desired image translation.

Quantitative results analysis. Furthermore, we also present
some quantitative metrics in the C2GF task. As shown in
Tab. II, it can be observed that our image translation re-
sults demonstrate significant improvements across these four
metrics, which highlights the effectiveness of the prompt
redescription mechanism.

w/w/ Simple AlignmentInput

Fig. 7: Comparison of the generation results of ‘w/ Simple
Alignment’ and ‘w/ Lrewrite’.

Effects of prompt rewrite module. To verify the effective-
ness of the alignment and rewrite modules, we have made an
ablation study. Suppose we apply an independent alignment
module instead of using the rewrite module, we show the
generated results in Fig. 7. During the editing stage, there
exists a gap between the prompt and expected prompt at each
time step. A simple alignment strategy fails to compensate
this gap among prompts, leading to a poor quality. Although
an independent alignment module aligns the overall structure
with the original image, it fails to preserve image details. As
shown in Fig. 7, without rewrite module, the orientation of
boy’s face and dog’s head exhibit an unreasonable rotation.
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Pix2Pix-Zero
w/Pix2Pix-ZeroInput

Fig. 8: The generated results of Pix2Pix-Zero ‘w/o Lrewrite’
and ‘w/ Lrewrite’.

Instead, our method aligns the prompt with expected prompt
at each time step by rewrite module, achieving a successfully
image translation that preserves the structural consistency.

Further investigations on the rewrite module. We apply
the prompt rewrite module to DDIM [1] and Pix2Pix-Zero [15]
for further investigation. As shown in Fig. 8, the structure of
‘Pix2Pix-Zero w/ Lrewrite’ is consistent to the original image.
Additionally, we show the results of DDIM with the proposed
rewrite module. As shown in Fig. 9, ‘DDIM w/ Lrewrite’ is
more faithful to the structure of the original image.

DDIM w/DDIMInput

Fig. 9: The generated results of DDIM ‘w/o Lrewrite’ and ‘w/
Lrewrite’.

IV. CONCLUSION

In this paper, we aims to address the deviation and dis-
placement problems of current text-to-image diffusion models
in image translation tasks. By introducing a new prompt
redescription mechanism, our method surpasses state-of-the-
art diffusion-based image translation methods on both visual
results and quantitative results.
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