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Abstract—We present a fast and high-quality codec language
model for parallel audio generation. While SoundStorm, a state-
of-the-art parallel audio generation model, accelerates inference
speed compared to autoregressive models, it still suffers from
slow inference due to iterative sampling. To resolve this problem,
we propose Group-Masked Language Modeling (G-MLM) and
Group Iterative Parallel Decoding (G-IPD) for efficient parallel
audio generation. Both the training and sampling schemes enable
the model to synthesize high-quality audio with a small number
of iterations by effectively modeling the group-wise conditional
dependencies. In addition, our model employs a cross-attention-
based architecture to capture the speaker style of the prompt
voice and improves computational efficiency. Experimental re-
sults demonstrate that our proposed model outperforms the
baselines in prompt-based audio generation.

Index Terms—Parallel audio generation, neural audio codec

I. INTRODUCTION

ECENT development of neural audio codecs [1]], [2]]
has brought significant attention to large language mod-
els (LLM) as a promising avenue for audio generation.
The transformer-based LLMs in Natural Language Process-
ing (NLP) area have demonstrated their outstanding perfor-
mance by capturing the long-term context and remarkable
zero-shot capability through in-context learning [3[], [4]. In-
spired by this line of research, casting the audio generation
in the continuous domain [5]—[7] to the discrete domain, by
taking advantage of a powerful LLM, has unlocked rapid
progress in versatile applications. Notably, [§]] introduced
an autoregressive transformer to model the discrete acoustic
tokens, exploring its application in audio continuation tasks by
using the audio prefix as a prompt. Furthermore, [9] and [|10]]
successfully employed codec language models in zero-shot
speech synthesis, using only a few seconds of an unseen
prompt voice. Despite these advancements, the length of an
acoustic token sequence generated from neural audio codecs is
typically longer than that of natural language tokens due to its
frame rate. This poses challenges for developing transformer-
based discrete audio generation models that have quadratic
runtime complexity.
To address this issue, prior research [11]—[15] proposed
various methods to enhance computational efficiency. For
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Fig. 1. Overview of our proposed model

instance, [13]] and [[15] suggested novel codebook patterns to
reduce iterations in autoregressive modeling, while [[14] intro-
duced a non-autoregressive diffusion model [[16] for modeling
the continuous acoustic token embedding. SoundStorm [11]],
the primary focus of this work, introduced a confidence-based
parallel decoding technique for modeling the discrete acoustic
token sequence. Leveraging the characteristics of residual vec-
tor quantization (RVQ)-based codebooks [2], the confidence-
based parallel decoding technique significantly reduced the
complexity of non-autoregressive models, generating acoustic
tokens iteratively with fewer sampling passes. Although these
approaches have somewhat improved inference speed, they
still show slow generation due to their iterative nature.

Motivated by this problem, we propose a fast, high-
quality codec language model for parallel audio generation.
As illustrated in Fig. [} our approach focuses on semantic-
to-acoustic token generation given prompt acoustic tokens.
We employ HiFi-Codec [17]] for acoustic tokenization and
Wav2Vec 2.0 [18] for semantic tokenization. HiFi-Codec
provides Group-RVQ (G-RVQ)-based acoustic tokens, facil-
itating high-quality audio tokenization with more concise
codebooks. Based on these G-RVQ acoustic tokens, we pro-
pose an efficient training algorithm, Group-Masked Language
Modeling (G-MLM), which employs group-wise conditional
dependency. Furthermore, we propose Group-Iterative Parallel
Decoding (G-IPD), mirroring this training procedure, and ver-
ify that G-IPD enables our model to generate acoustic tokens
with fewer iterations without compromising audio quality.
Additionally, we propose a cross-attention-based prompting
method, a computationally efficient structure for reflecting the
speaker identity of the prompt voice.

II. BACKGROUNDS
A. Group Residual Vector Quantization (G-RVQ)

Residual Vector Quantization (RVQ), employed in Sound-
Stream [2] and Encodec [1]], encodes multiple streams of
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Fig. 2. Bi-group, bi-depth G-RVQ for acoustic tokenization

discrete tokens from audio, within the framework of VQ-
VAE [19]. RVQ compresses each audio frame through cas-
caded quantizers, with each quantizer contributing residually
to the encoding process, generating multi-level sequences of
codewords. In this configuration, the initial level codebook
retains the most fundamental audio information, and the num-
ber of quantization levels N, controls the trade-off between
computational cost and coding efficiency.

More recently, HiFi-Codec [|17] introduced a Group Resid-
ual Vector Quantization (G-RVQ) scheme, demonstrating su-
perior performance at lower bit rates. G-RVQ divides the latent
features extracted from the encoder into G' groups and applies
RVQ to each group with N, levels. For example, with a target
bitrate of & = 2000 bps and 50 output frames per second,
resulting in » = 2000/50 = 40 bits allocated to each frame,
and for Ny = 2 and G = 2, the total rate budget is evenly
distributed among each Vector Quantization (VQ) layer, i.e.,
r; = r/(Ny * G) = logy N. Consequently, the codebook size
becomes N = 27 = 2%0/4 —= 1024. As G-RVQ utilizes
multiple initial levels of RVQ codebooks, it demonstrates a
higher compression rate compared to RVQ.

B. SoundStorm

SoundStorm is a non-autoregressive model designed for
translating semantic tokens into acoustic tokens. Semantic
tokens are derived from W2V-BERT [20]] to encode coherent
semantic information, while RVQ-based acoustic tokens are
extracted from the SoundStream [2|] audio codec for encoding
acoustic information. SoundStorm [11]], comprising conformer
blocks [21]], is trained to predict masked acoustic tokens given
the semantic tokens. The bidirectional conformer structure
allows for acoustic token generation in an arbitrary order,
ensuring prompt speaker and acoustic consistency. In order
to improve the inference speed, SoundStorm applies the iter-
ative sampling scheme of MaskGIT [22]] for parallel audio
generation. At each sampling iteration, the top-k predicted
tokens with the highest confidence scores are kept fixed,
while the rest are predicted again. The number of predicted
tokens in each round is gradually increased, ensuring the
conditional dependency between acoustic tokens and this
process proceeds RVQ level-wise in a coarse-to-fine order.
Although SoundStorm improves the inference speed compared
to autoregressive models, it often compromises the speech
quality when reducing the decoding iterations.

III. PROPOSED METHOD
A. Tokenization

We perform k-means clustering for semantic tokenization
over the 15th hidden representation of Wav2Vec 2.0 [18].
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Fig. 3. Overall model architecture

Previous research [23]], [24] showed that these discrete tokens
effectively capture semantic information, even substituting
phonetic sequences. For acoustic tokens, we leverage the bi-
group bi-depth G-RVQ of HiFi-Codec as illustrated in Fig.
Let x represent a waveform, and z € R” be a latent feature.
The acoustic tokenization process is performed as follows:

2P = Enc(x)
[a9,af, aj, ai] = GRVQ(z) (D
ac.dy = [a9,qY), [a5, ai),

where ¢ € {1,2, ...,C}T represents the acoustic token se-
quence for j-th quantizer level and g-th group. The maximum
length and codebook size are denoted as 7" and C, respectively.
We denote q as the coarse-grained acoustic tokens and qy as
the fine-grained acoustic tokens. Utilizing G-RVQ rather than
RVQ can encode more abundant acoustic information, and its
concise RVQ depth brings computational efficiency.

B. Model Architecture

As shown in Fig. 3] (a), our model builds upon the architec-
ture of SoundStorm [[11]], employing a conformer [21] module
and a masked language modeling approach [25]]. For the input
of the prediction network, we aggregate the embeddings of
the semantic tokens and the corresponding frames of partially
masked acoustic tokens. Then, our model predicts acoustic
tokens given the prompt acoustic token embedding as a con-
ditioning signal. The output embeddings from the prediction
network are processed by separate heads for each RVQ level.

To capture the speaker information of the prompt voice,
we employ a multi-head cross-attention module [26] in the
prediction network, as shown in Fig. 3] (a). Let e denote the
output of the prompt encoder and h be the output of the self-
attention in the prediction network. The key, K and value, V
are derived from e, and the query, Q is obtained from h. The
multi-head cross-attention module operates as follows:

Q; = hW,, K; =eWj, V; = eW},
Q:K;
Vd
c = [heady, ..., heady, |,

head; = Softmax(

Vi 2)
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(a) Iterative parallel decoding (IPD)

Fig. 4. Comparison of iterative inference process: (a) SoundStorm’s IPD,

where W/, W, and W denote the linear projections for
the key, value, and query, respectively. In (2), c represents the
context vector summarizing the prompt voice. By leveraging
the cross-attention mechanism [26]], there are distinct advan-
tages compared to SoundStorm. Firstly, unlike SoundStorm,
which requires semantic tokenization of the prompt sequence,
our model seamlessly captures prompt information using only
acoustic tokens. This simplifies the inference process by
eliminating the necessity for semantic tokenization of the
prompt sequence. Secondly, our cross-attention mechanism
strategically caches the key and value, avoiding the need
for repetitive computation of the prompt part throughout the
iterative sampling process. As a result, the prompt part needs
to be calculated only once during inference while maintaining
the prompt speaker information.

C. Training and Inference

To harness the full potential of G-RVQ acoustic tokens,
we propose the Group-Masked Language Modeling (G-MLM)
approach for training the model. In this training scenario, we
first sample the prompt delimiter time step t ~ Ule, T — 1]
to separate prompt and target sequence, where € means a
starting frame index. The tokens before ¢ constitute the prompt
acoustic tokens, while those after ¢ form the target sequence
for generation. Our core idea lies in the masking strategy
outlined in Algorithm [1} When training the coarse-grained
acoustic tokens q. = [qY, q}], we apply the cosine-scheduling
mask [11], [22] separately to q) and qf in temporal axis,
while masking all of the fine-grained acoustic tokens. As the
G-RVQ tokens are extracted from the same latent feature,
we assume that q) and qf are highly entangled. Based on
this assumption, our inter-group masking strategy reduces the
modeling complexity by employing the group-wise conditional
dependency. For training fine-grained acoustic tokens, we
apply the cosine mask to the fine-grained acoustic tokens in the
same manner. Our model exploits RVQ-depth-wise conditional
dependency in this step by leaving coarse-grained acoustic
tokens unmasked. Finally, our model is trained with the cross-
entropy loss using the ground-truth acoustic tokens as the
target, and the loss is calculated only for the masked tokens.

For inference, we propose the Group Iterative Parallel
Decoding (G-IPD) technique, mirroring the G-MLM train-
ing scheme. Fig. /4| illustrates a comparison between G-IPD
and SoundStorm’s IPD [[11]. Both techniques initially predict
coarse-grained acoustic tokens and subsequently fine-grained
acoustic tokens. When predicting coarse-grained acoustic to-
kens, a confidence-based iterative sampling [[11]], [12], [22]]
scheme is employed. At each iteration, the predicted tokens
with the highest confidence scores are fixed, while the rest
are re-masked. The number of masked tokens for each round

(b) Group-iterative parallel decoding (G-IPD)

and (b) proposed method’s G-IPD technique. s denotes the iteration steps.

is gradually decreased, following cosine schedule [11]]. The
key difference from the SoundStorm [11]’s IPD is that our
decoding scheme involves the acoustic token sequences from
two distinct groups together in the search space for each
iteration. Doubling the search space allows our model to
exploit group-wise conditional dependency, resulting in fewer
iterations without performance degradation. Furthermore, G-
RVQ inherently encodes rich audio information even at lower
bitrates than RVQ. This contributes to faster inference while
keeping the audio quality. Once the coarse-grained acoustic
tokens are generated, they are used as conditions for predicting
fine-grained acoustic tokens in a single step.

Algorithm 1 Masking strategy for G-MLM
Input coarse-grained acoustic tokens (., fine-grained acoustic
tokens ¢
Output masked acoustic token g
1: | ~ Bernoulli(0.5)

> Sample quantization level

2: if [ = 0 then > Training the coarse-grained acoustic
tokens

3: qM = CosineMask(q,),

4 q} = EntireMask(q;)

5: else > Training the fine-grained acoustic tokens

6: quw = CosineMask(qy)

7: end if

8: M = Concat(q)', q}")

9: return q

IV. EXPERIMENTS

In this section, we evaluate the performance of our proposed
model in prompt-based audio generation. To assess how well
the model captures speaker consistency, the experiments were
carried out in two scenarios: (1) the prompt speaker and the
target speaker are the same, and (2) the prompt speaker and the
target speaker are different. The second scenario is identical
to the zero-shot voice conversion. Furthermore, we compare
the runtime of our proposed model with the baseline. Our
synthesized audio samples are publicly available at our demo
page: https://jmhxxi.github.io/SoundGroup-demo/.

A. Experimental setup

1) Implementation details: Our proposed model was trained
for 800k iterations on 4 NVIDIA RTX8000 GPUs. The batch
size was 128, with a gradient accumulation of 2. In this
study, we use the open-sourced neural audio codecs from the
AcademiCodecE]toolkit. Acoustic tokenization was performed
using HiFi-Codec, producing 50 frames per second, resulting

! AcademiCodec: |https://github.com/yangdongchao/AcademiCodec.
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in the target bitrate of 50 - 4 - log, 1024 = 2000 bps. Our
proposed model was trained with all of the training datasets
of Libri-TTS [27]], and the HiFi-Codec was pretrained with the
same datasets as in the original configuration. For evaluation,
we used the Libri-TTS test-clean subset so that all speakers in
the evaluation set were unseen during training. We randomly
selected the evaluation set consisting of 720 sentences and
20 sentences per speaker. All the speech data were sampled
with a sampling rate of 24 kHz. For semantic tokenization, we
used the pre-trained Wav2Vec 2.0 XLSR [28]], with a total of
512 clusters for k-means clustering, and they were temporarily
aligned to corresponding acoustic tokens. We evaluated the
runtime on the single NVIDIA RTX8000 GPU to compare
inference speed.

2) Baselines: We employed the SoundStorm model with
the SoundStream codec as a baseline architecture. To eliminate
data dependencies, we trained the SoundStream codec using
the same dataset as HiFi-Codec. Following the SoundStorm
configuration, we utilized the 6000 bps SoundStream codec
with N, = 12. We compared the SoundStorm and the
proposed model by varying iteration numbers. During decod-
ing, we used (16, 1, 1, ..., 1) iterations of SoundStorm for
N = 27 and greedy sampling for N = 12. Additionally, for
different speaker prompt settings, we employed the variational
inference-based (VITS) [29] voice conversion model as a
baseline. We added ECAPA-TDNN [30] as a reference encoder
to the VITS for speaker conditioning.

3) Evaluation metrics: We performed a Mean Opinion
Score (MOS) test to assess synthesized speech quality, with
17 evaluators rating naturalness. To measure intelligibility, we
computed the Character Error Rate (CER) using a pretrained
Whisper [31] large model in official implementation. For
speaker similarity, Similarity Mean Opinion Score (SMOS)
and Speaker Embedding Cosine Similarity (SECS) were used.
For SMOS evaluation, 17 listeners assessed how well the
generated speech captured the speaker identity of the prompt
speech. For SECS, we quantified the cosine distance between
the speaker embeddings of the generated and prompt speech,
using WavLM-TDNN [32] as a pretrained speaker verification
model.

B. Results and Analysis

1) Prompt-based audio generation: We present the results
of prompt-based audio generation in Table [I] where N, and
N indicate the number of iterations for coarse acoustic tokens
and the total number of iterations, respectively. Our proposed
model demonstrates superior performance in all metrics com-
pared to the SoundStorm baseline at the same number of itera-
tions, IN. Moreover, our proposed model exhibits significantly
better performance when compared to the VITS-based model
in different prompt speaker setting. This indicates the proposed
model’s excellence in speaker similarity, audio quality, and
speech intelligibility. Notably, in the case of SoundStorm,
remarkable performance degradation was observed when N
was reduced to 12. In contrast, our proposed model maintained
performance even with N = 6, surpassing the performance
of SoundStorm (N=27). The performance drop of the pro-
posed model (N=2) was induced by the absence of G-IPD

TABLE I
COMPARISON OF RESULTS FOR AUDIO GENERATION. MOS AND SMOS
ARE DESCRIBED WITH 95% CONFIDENCE INTERVALS.

Method CER SECS MOS SMOS

With Same Prompt Speaker

0.71 0.737 4.554+0.08 4.55+0.07
3.02 0.429 3.2440.07 3.99+0.07
2.87 0.437 3.834+0.07 4.10+0.08

Proposed (N. =1, N = 2) 2.90 0.412 3.0640.07 3.631+0.08
Proposed (N, =5, N = 6) 2.69 0.475 4.06+0.07 4.30+0.07
Proposed (N = 11, N = 12) 2.57 0.476 4.2740.07 4.42+0.07
Proposed (N, = 26, N = 27) 2.36 0.487 4.49+0.06 4.47+0.06

Ground Truth
SoundStorm (N = 12)
SoundStorm (N = 27)

With Different Prompt Speaker
VITS + Ref. (conversion) 2.71 0.382 3.3940.08 3.8240.07
SoundStorm (N = 12) 3.23 0.381 3.5440.08 3.86+0.08
SoundStorm (N = 27) 3.11 0.392 3.8640.08 4.2440.07

Proposed (N. =1, N = 2) 3.28 0.367 3.10+£0.07 3.58+0.08
Proposed (N. =5, N = 6) 2.53 0.406 4.114+0.07 4.2240.07
Proposed (N. = 11, N =12) 2.49 0.416 4.38+0.07 4.51£0.06
Proposed (N. = 26, N = 27) 2.46 0.417 4.41+0.07 4.541+0.05

Short prompt (3s) Long prompt (10s)

m Prompt Semantic Tokenization m Prompt Semantic Tokenization
SoundStorm

Proposed Model

SoundStorm
Proposed Model

INFERENCE TIME (S)
INFERENCE TIME (S)

0 - - = , m [ m [
Ss 10s 15: 20s S5s 10s 15s 20s

55
TARGET LENGTH TARGET LENGTH

Fig. 5. Comparison of inference speed. The prompt semantic tokenization
is only used in SoundStorm’s sampling process, and presented SoundStorm’s
runtime is evaluated without prompt semantic tokenization

sampling, which failed to account for group-wise conditional
dependency.

2) Inference speed: We compared the inference speed of
our proposed model to that of SoundStorm. For a fair com-
parison, we fixed the total iteration number N = 27. As
shown in Fig. [5] the proposed model is much faster than
SoundStorm across all target and prompt lengths. Although
the runtime of the self-attention module was dependent on
the sequence length, our cross-attention-based architecture was
less affected by the variations in prompt and target length.
In particular, the runtime gap between proposed model and
SoundStorm increase in long prompt setting, because proposed
model avoids repetitive computation of prompt part throughout
the inference process. As indicated in Table [ we expect
that our proposed model can reduce N without a significant
performance drop, resulting in much faster inference.

V. CONCLUSION

We have proposed a fast and high-quality codec language
model for parallel audio generation using Group-Masked
Language Modeling. For future work, we plan to extend our
proposed model to support the zero-shot multi-speaker text-
to-speech via a text-to-semantic translation model.
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