
IEEE SIGNAL PROCESSING LETTERS 1

Class Based Thresholding in Early Exit Semantic
Segmentation Networks

Alperen Görmez and Erdem Koyuncu, Senior Member, IEEE

Abstract—We consider semantic segmentation of images using
deep neural networks. To reduce the computational cost, we
incorporate the idea of early exit, where different pixels can be
classified earlier in different layers of the network. In this context,
existing work utilizes a common threshold to determine the class
confidences for early exit purposes. In this work, we propose
Class Based Thresholding (CBT) for semantic segmentation.
CBT assigns different threshold values to each class, so that
the computation can be terminated sooner for pixels belonging
to easy-to-predict classes. CBT does not require hyperparam-
eter tuning; in fact, the threshold values are automatically
determined by exploiting the naturally-occurring neural collapse
phenomenon. We show the effectiveness of CBT on Cityscapes,
ADE20K and COCO-Stuff-10K datasets using both convolutional
neural networks and vision transformers. CBT can reduce the
computational cost by up to 23% compared to the previous
state-of-the-art early exit semantic segmentation models, while
preserving the mean intersection over union (mIoU) performance.

Index Terms—Early exit, neural collapse, segmentation.

I. INTRODUCTION

As deep learning advances rapidly, new, larger models
are frequently introduced, leading to improved performance
[1]–[3]. However, larger models, while capable of learning
complex patterns, come with higher inference costs. In the
era of decentralized computing on edge devices (e.g., IoT),
minimizing the inference cost of large models becomes crucial
for deployment on resource-constrained devices [4], [5].

To reduce the inference cost without compromising perfor-
mance, early exit networks are proposed [6], [7]. Early exit
networks capitalize on the heterogeneity of real world data.
Since not all data samples have the same “difficulty”, “easy”
data samples can be allowed to exit the model early to save
computation [6]–[10]. Early exit networks have been studied
in conjunction with network pruning [11], [12]. They also have
close ties with the phenomenon of neural collapse [8], [13].

The neural collapse phenomenon states that as one travels
deeper in a neural network, the intermediate representations
become more disentangled, forming distinct clusters at the last
layer, which makes classification easier [13]. Recent works
expand on this phenomenon and show that clusters begin to
form even at earlier layers [8], [14], resulting in a so-called
cascading collapse. In the supervised setting, each cluster
corresponds to a class where the model is trained on, and
the mean of the cluster is referred to as simply a class mean.

Submission date: January 24, 2024. This work was supported in parts
by the Army Research Lab (#W911NF2120272), the Army Research Office
(#W911NF2410049), and the National Science Foundation (CNS-2148182).

The authors are with the Department of Electrical and Computer Engi-
neering, University of Illinois Chicago, Chicago, IL 60607 USA (e-mails:
{agorme2, ekoyuncu}@uic.edu).

11%

23%

Fig. 1. Comparison of CBT with the previous state-of-the-art on the
Cityscapes dataset for HRNetV2-W48 model.

In [8], the authors propose an early exit mechanism utilizing
the neural collapse phenomenon, outperforming various exist-
ing schemes. Specifically, a representation that is sufficiently
close to a class mean at any given layer can be allowed an early
exit, without significant penalty in classification performance.
However, the idea of using the nearest class mean decision
rule is not immediately applicable to the task of semantic
segmentation since one now needs to perform pixel-wise clas-
sification. In fact, in the image classification task, there is one
input and it belongs to one class. Therefore, the representations
of the images with the same label can be averaged, and class
means can be calculated. The intermediate layer outputs will
be close to only one class mean, and a meaningful prediction
can be performed based on the distances to the class means [8].
On the contrary, in semantic segmentation, one input has many
pixels, each of which belong to different classes. One image
has one representation at each layer, and components of a
representation corresponds to many pixels. Hence, class means
cannot be immediately calculated from the representations for
individual pixels for the task of semantic segmentation.

Having too many pixels in an image results in the curse
of dimensionality, which presents an additional complication.
In fact, even if the class means could be obtained, using
the nearest class mean decision for the pixels would be too
costly since there are thousands of pixels in an image. These
make it infeasible to calculate the class means for the pixels
using existing algorithms (e.g. [8]). Nevertheless, utilizing the
neural collapse phenomenon for semantic segmentation would
be particularly useful because the amount of computation
can be reduced significantly for the state-of-the-art semantic
segmentation models [15]–[23].

We propose “Class Based Thresholding (CBT)”, a novel
algorithm that reduces the computational cost while preserving
the model performance for the semantic segmentation task.
Leveraging the neural collapse phenomenon, CBT calculates

This article has been accepted for publication in IEEE Signal Processing Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LSP.2024.3386110

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE SIGNAL PROCESSING LETTERS 2

OR OR

.

Ground truth labels

Model outputInput m

Exit 1 Exit 2

Mask 1 Mask 2

T
re

e

T
re

e

G
ro

u
n

d

G
ro

u
n

d

S
k

y

S
k

y

Fig. 2. Overview of our Class Based Thresholding (CBT) scheme at the inference time for an example network with N = 2 exit layers and K = 3 classes:
Tree, ground, and sky. In contrast to [29] and [30], CBT utilizes different thresholds for different classes, considering their varying levels of inherent difficulty.
The thresholds are determined as a function of only two non-trainable hyperparameters, independent of the number of classes or exits, thanks to our neural
collapse inspired design. At each exit, the layer output is split into K = 3 channels, where each channel corresponds to one of the tree, ground, or sky classes.
The channels are then transformed into masks using their corresponding distinct thresholds, and the resulting masks are merged. The methods presented in
[29] and [30] thus become a special case of CBT where the thresholds for every class is the same. Mask 1 illustrates the confident (white) pixels after the
merger at Exit 1, which is subsequently integrated into the following layers through multiplication. This integration ensures that the model avoids unnecessary
computations for these confident pixels in subsequent layers. Exit 2 follows the same mechanism for inference. Mask 2 exhibits a greater number of confident
pixels due to the input image passing through layers between Exit 1 and Exit 2. The exit predictions become progressively better.

the mean of the prediction probabilities of pixels in the training
set, for each class. Then, the thresholds for each class are cal-
culated via a simple transformation of the class means. These
thresholds are then employed to allow the early termination of
the computation for confidently predicted pixels at inference
time. We show the effectiveness of CBT on the Cityscapes
[24], ADE20K [25] and COCO-Stuff-10K [26] datasets using
the HRNetV2-W18, HRNetV2-W48 and vision transformer
models [27], [28]. By efficiently utilizing the neural collapse
phenomenon, CBT can reduce the computational cost by up to
23% compared to the previous state-of-the-art method while
preserving the model performance as shown in Fig. 1.

II. CLASS BASED THRESHOLDING

We build on the state-of-the-art early exit semantic segmen-
tation method, “Anytime Dense Prediction with Confidence
Adaptivity (ADP-C)” [29]. ADP-C adds early exit layers to the
base semantic segmentation model and introduces a masking
mechanism based on a single user-specified threshold value
t to reduce the computational cost. If a pixel is predicted
confidently at an exit layer, i.e., the maximum prediction
probability over all classes is greater than the threshold t, that
pixel is masked for all subsequent layers. Any masked pixel
will not be processed again at later layers. The computational
cost is reduced due to the induced feature sparsity. While it
is possible to let every pixel exit at the same time [31], this
approach performs worse at the boundaries of objects, and
therefore we focus on ADP-C and pixel-wise early exiting.

A big room for improvement for ADP-C stems from the
observation that the same user-specified threshold value t

is used for every class. However, it is more plausible that
different threshold values should be used for different classes,
and the threshold values should reflect the dataset and class
properties, rather than just being a user-specified number. The
observation from [32] supports our hypothesis: “The distri-
bution of max logits of each predicted class is significantly
different from each other.” This is because pixels belonging
to different classes have different difficulty levels of being
predicted correctly. For example, using t = 0.998 for bicycle
class as in ADP-C makes sense because we may want to be
really certain about pixels belonging to bicycles. However,
pixels belonging to the sky class will be often easier to predict
than pixels belonging to the bicycle class, which means the
model will be confident about them much sooner. Therefore,
a lower threshold value can be used for the sky class without
significant penalty in prediction accuracy. Otherwise, more
computation will have to be performed for the sky pixels.

Given a model trained on a semantic segmentation task
with K classes, we propose using different masking threshold
values per class, based on the dataset and class properties. Let
T = [T1 · · ·TK] ∈ [0, 1]

K be the threshold vector that we
wish to determine, where the kth element Tk corresponds to
class k, and k ∈ {1, 2, . . . ,K}. Consider M training inputs,
each of which have a height of H pixels, and a width of W
pixels. Suppose that we utilize N exit layers in the model. The
class prediction probabilities provided by the model at exit n
for each (m,h,w) triplet can be represented by the function
ϕn : RM×H×W → [0, 1]K . Hence, given a pixel at height h,
width w of input m, the prediction probabilities for the K
classes at exit n are expressed as ϕn(m,h,w).

This article has been accepted for publication in IEEE Signal Processing Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LSP.2024.3386110

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE SIGNAL PROCESSING LETTERS 3

Let Sk denote the set of all pixels, or (m,h,w) triplets,
whose ground truth is class k. At each exit layer n, for each
class k in the training set, we calculate the mean of layer n’s
prediction probabilities using all training set pixels in Sk. This
averaging helps obtaining a broad sense of information about
the difficulty of pixels. This yields

pn,k ≜
1

|Sk|
∑

(m,h,w)∈Sk

ϕn(m,h,w) ∈ [0, 1]
K
. (1)

The motivation of averaging in (1) comes from the neural
collapse phenomenon, which states feature vectors converge
to their average class means as one goes deeper in a network
[13]. Indeed, the averages pn,k should empirically be a good
estimate for the class probabilities, especially for a deep layer
index n. Specifically, the ith element of pn,k denotes the
average probability of a pixel belonging to class i when the
ground truth for that pixel is class k. Next, we compute

Pk =
1

N

N∑
n=1

pn,k ∈ [0, 1]
K
, (2)

which is the average of pn,k over all layers. Hence, information
across layers is shared to obtain a global estimate Pk on the
difficulty of classes. The logic for the information sharing
across layers is to leverage insights from both shallow and
deep layers, and to make the thresholding less complex due to
having only one set of thresholds for every exit. Information
sharing in CBT can be seen as a naive version of feature reuse
in other multi-exit network settings such as [33]–[37].

We then translate the estimates to classification thresholds
as follows. We initialize the threshold Tk to be the difference
between the largest and the second largest elements of Pk, be-
cause this initialization strategy has been shown to be a reliable
confidence score, effectively capturing the importance of the
most dominant element relative to the second-largest one [8],
[9]. If the confidence score is high, then the masking threshold
should be low so that the computation can terminate easily.
After all components of T are initialized in this manner, we
inversely scale T according to two non-trainable parameters
α and β so that the maximum and minimum class confidence
scores determined by T will be converted to masking threshold
values α and β respectively, where α < β. The rationale
behind this inverse scaling is to guarantee that classes with
high confidence scores will have low thresholds and vice versa.
Specifically, the scaling is done via

Tk ←
(
1− Tk −minT

maxT −minT

)
(β − α) + α. (3)

The inference is performed as follows: Let π ∈ [0, 1]
K be

the prediction probabilities for a pixel at an exit layer. Let j =
argmaxπ. If πj > Tj , this pixel will be marked as confidently
predicted (predicted as class j) and will be incorporated to the
mask M as in Fig. 2. By doing so, the outputs of subsequent
layers at these locations will not be calculated. Instead, already
computed values will be used. Note that once calculated, T is
not updated in inference.

III. EXPERIMENTS AND RESULTS

We compare CBT against ADP-C [29] and DToP [30].
ADP-C and DToP allow early prediction of pixels, but

TABLE I
RESULTS ON CITYSCAPES.

Method

M
od

el Exit
1 2 3 4

mIoU GFLOPs mIoU GFLOPs mIoU GFLOPs mIoU GFLOPs
MDEQ [38] S 17.3 521.6 38.7 717.9 65.6 914.2 72.4 1110.5

ADP-C

H
R

N
et

V
2-

W
48

44.34 41.92 60.13 93.90 76.82 259.33 68.55 387.80

CBT [0.99, 0.998] 44.34 41.92 59.85 84.02 76.29 206.89 80.69 299.10

CBT-ns [0.99, 0.998] 44.34 41.92 59.82 84.00 76.28 206.88 80.74 299.17

CBT [0.95, 0.998] 44.34 41.92 57.97 71.57 72.86 155.77 76.60 222.65

CBT [0.9, 0.998] 44.34 41.92 56.05 65.91 68.92 132.49 72.29 186.31

ADP-C β = 0.9 44.34 41.92 54.86 53.27 67.10 118.25 69.31 157.48

ADP-C

H
R

N
et

V
2-

W
18 40.83 23.68 48.19 33.27 68.26 45.40 77.02 58.90

CBT [0.99, 0.998] 40.83 23.68 48.07 31.74 67.98 41.40 76.57 51.26

CBT [0.95, 0.998] 40.83 23.68 46.97 29.51 64.88 36.25 71.18 43.35

CBT [0.9, 0.998] 40.83 23.68 45.79 28.39 61.32 33.72 67.45 39.42

TABLE II
RESULTS ON ADE20K.

Method

M
od

el Exit
1 2 3 4

mIoU GFLOPs mIoU GFLOPs mIoU GFLOPs mIoU GFLOPs
ADP-C

H
R

N
et

V
2-

W
48

4.12 6.20 5.16 15.42 12.15 52.47 42.82 100.28

CBT [0.9, 0.998] 4.12 6.20 5.15 15.07 12.09 50.48 41.85 94.31

CBT-ns [0.9, 0.998] 4.12 6.20 5.15 15.06 12.08 50.48 41.87 94.34

CBT [0.8, 0.998] 4.12 6.20 5.14 14.80 11.90 48.81 40.17 90.25

CBT [0.7, 0.998] 4.12 6.20 5.12 14.55 11.58 47.27 37.54 86.52

ADP-C

H
R

N
et

V
2-

W
18 4.89 5.88 6.83 7.84 8.94 12.73 9.74 19.04

CBT [0.9, 0.998] 4.89 5.88 6.80 7.73 10.07 12.24 11.78 17.89

CBT [0.8, 0.998] 4.89 5.88 6.75 7.67 10.17 11.98 11.95 17.26

CBT [0.7, 0.998] 4.89 5.88 6.70 7.62 10.09 11.75 11.88 16.71

TABLE III
COMPARISON OF CBT AGAINST DYNAMIC TOKEN PRUNING (DTOP).

Method

D
at

as
et

M
od

el

Exit

1 2 3

mIoU GFLOPs mIoU GFLOPs mIoU GFLOPs

DToP

A
D

E
20

K
V

iT
-B

as
e

41.79 55.70 45.85 66.60 49.21 83.52

CBT [0.85, 0.9] 41.79 55.70 45.52 65.60 49.04 80.80

DToP

V
iT

-L
ar

ge

37.86 208.96 47.97 352.32 52.18 452.3

CBT [0.9, 0.95] 37.86 208.96 47.82 336.01 51.69 421.93

DToP

C
O

C
O

St
uf

f1
0K

31.89 124.94 41.71 205.14 45.64 266.17

CBT [0.9, 0.95] 31.89 124.94 41.09 197.53 45.29 252.04

they use the same thresholds for all classes. We use
Cityscapes, ADE20K, COCO-Stuff-10K datasets [24]–[26],
and HRNetV2-W18, HRNetV2-W48, ViT models for evalua-
tion [27], [28]. We use mean intersection over union (mIoU)
as our performance metric and number of floating point
operations (FLOPs) as our computational cost metric. We
attach 3 early exit layers to HRNet models as in [29] and
2 to ViT models as in [30] with the same exit structures and
positions. The training is done by using the weighted sum of
the exit losses. We assign the same weight of 1 to exit losses.

We have evaluated CBT with numerous α-β pairs (denoted
as CBT [α, β]). We kept β = 0.998 for HRNet models,
β = 0.9 for ViT-Base, and β = 0.95 for ViT-Large in
our experiments for a fair comparison because ADP-C and
DToP achieve the best performance with these values. For
comparison purposes, we also included β = 0.9 for ADP-

This article has been accepted for publication in IEEE Signal Processing Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LSP.2024.3386110

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE SIGNAL PROCESSING LETTERS 4

9%

13%

Fig. 3. Comparison of CBT with the previous state-of-the-art on the
Cityscapes dataset for HRNetV2-W18 model.

C in Table I. Naturally, it has the lowest mIoU and GFLOPs
because all classes use the same threshold of 0.9, the lowest
among the experiment settings. As shown in Tables I, II and
III, lower α facilitates pixels exiting early, and increasing it
results in more confident predictions.

By Table I, CBT [0.99, 0.998] decreases the computational
cost by 23% while losing only 0.62 mIoU for HRNetV2-W48.
For Exits 2 and 3, the computational cost is decreased by 10%
and 20% respectively. By using smaller α, the computational
cost can be decreased more, but mIoU starts degrading as
well. Note that Exit 4 of CBT [0.95, 0.998] can match the
performance of Exit 3 of ADP-C while using 14% less
computation. For HRNetV2-W18, the results follow the same
trend: CBT [0.99, 0.998] decreases the computational cost by
9% and 13% for exits 3 and 4 respectively as seen in Fig. 3.

According to Table II, we observe that CBT can also reduce
the computational cost on the ADE20K dataset, which has sig-
nificantly more classes as compared to the Cityscapes datasets.
Specifically, CBT [0.90, 0.998] decreases the computational
cost by 6% while losing only 0.97 mIoU for HRNetV2-
W48. The reason why the performances at the first three
exit is low for both ADP-C and CBT is because the model
cannot perform well enough due to large number of classes.
It needs significantly more computation (e.g. 94.31 GFLOPs
instead of 15.07, also seen in Table III with ViT) to have
better performance. Also, this is why CBT cannot reduce
the computational cost on ADE20K as much as it does on
Cityscapes with HRNet models.

In Fig. 4, we illustrate CBT-calculated class thresholds
for Cityscapes and ADE20K datasets. Due to the ADE20K
dataset’s large number of classes, only the 19 classes with
the lowest thresholds are displayed for both datasets. For
Cityscapes, with a total of 19 classes, we exhibit all class
thresholds. Compared to ADE20K dataset, class thresholds are
spread out more uniformly between α = 0.9 and β = 0.998)
for Cityscapes dataset (σ = 0.033). For ADE20K dataset on
the other hand (σ = 0.009), the behavior is different: Most
class thresholds lie between 0.997 and 0.998. This supports
our observation that CBT can reduce the computational cost
more when the number of classes is relatively low. We can
also observe that for both datasets, simple classes such as
“sky” have low thresholds, while more complex classes have
typically have higher thresholds values, as expected.

Fig. 5 shows the relationship between different thresholds

Cityscapes Training Set Labels
0.90

0.92

0.94

0.96

0.98

1.00

Cl
as

s T
hr

es
ho

ld
s

Ro
ad

Ca
r

Bu
ild

in
g

Ve
ge

ta
tio

n
Sk

y
Si

de
wa

lk
Pe

rs
on

Tr
af

fic
 S

ig
n

Bi
cy

cle
Po

le
Te

rra
in

Tr
af

fic
 L

ig
ht

Fe
nc

e
Ri

de
r

W
al

l
M

ot
or

cy
cle

Bu
s

Tr
uc

k
Tr

ai
n

ADE20K Training Set Labels
0.90

0.92

0.94

0.96

0.98

1.00

Cl
as

s T
hr

es
ho

ld
s

W
al

l
Sk

y
Fl

oo
r

Tr
ee

Ce
ilin

g
Bu

ild
in

g
Ro

ad
Pe

rs
on

Ca
r

W
in

do
wp

an
e

Gr
as

s
Be

d
Ta

bl
e

Si
de

wa
lk

M
ou

nt
ai

n
Pa

in
tin

g
Ch

ai
r

Pl
an

t
Ea

rth

Fig. 4. CBT thresholds for Cityscapes and ADE20K (α = 0.9, β = 0.998).

Cityscapes Training Set Labels0.0

0.2

0.4

0.6

0.8

1.0

m
Io

U

tra
in

tru
ck

wa
ll

m
ot

or
cy

cle
rid

er
bu

s
fe

nc
e

po
le

te
rra

in
tra

ffi
c

lig
ht

sid
ew

al
k

tra
ffi

c
sig

n
bi

cy
cle

pe
rs

on
ca

r
bu

ild
in

g
sk

y
ve

ge
ta

tio
n

ro
ad

 = 0.9
 = 0.95
 = 0.99

0.90

0.92

0.94

0.96

0.98

1.00

Th
re

sh
ol

d

Fig. 5. Class-wise mIoU performances for HRNetV2-W48 at Exit 2 with
various α values (β = 0.998). Dashed lines indicate the corresponding class
thresholds.

and their corresponding class-wise mIoU performances. When
a lower α is used, class-wise mIoU performances drop slightly,
in line with the results in Tables I, II and III. The “sidewalk”
and “car” classes are affected the most with the change of their
thresholds. For easier, high-mIoU classes, the performance
drop is not drastic, suggesting the effectiveness of CBT.

A. Ablation Study
CBT calculates the average of pn,k over all exits as in (2)

to obtain one single vector Pk, which is later scaled to obtain
the thresholds. This allows the information across the layers
to be shared and reduces the number of total thresholds from
N ×K to K. Here, we disable the information sharing by not
averaging and allowing each exit to have its own thresholds
based on its pn,k. This prevents information flow from deeper
exits to shallower exits. Note that this is a more complex
method due to having more thresholds. We include the results
in Tables I and II only for the highest α values and denote
by CBT-ns, due to lack of space. As seen from the numbers,
there is no significant difference between CBT and CBT-ns,
meaning the more complex CBT-ns is not superior to CBT.

IV. CONCLUSION

We proposed a novel algorithm that utilizes the naturally
occurring neural collapse phenomenon to reduce the com-
putational cost of early exit semantic segmentation models.
Experiment results on different datasets and models suggest
our method is effective in reducing the computational cost
without significant penalty in model performance. We note
that the ideas developed in this paper can be applied to multi-
modal data, which inherently have different requirements for
processing complexity [39]–[42]. In particular, the thresholds
used for a neural network classifying text data should be
different than the thresholds used for the image data. A
detailed study is left as future work.

This article has been accepted for publication in IEEE Signal Processing Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LSP.2024.3386110

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE SIGNAL PROCESSING LETTERS 5

REFERENCES

[1] J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, and
P. Villalobos, “Compute trends across three eras of machine learning,”
2022. [Online]. Available: https://arxiv.org/abs/2202.05924

[2] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan,
M. Diab, X. Li, X. V. Lin et al., “Opt: Open pre-trained transformer
language models,” arXiv preprint arXiv:2205.01068, 2022.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[4] P. Li, H. Seferoglu, and E. Koyuncu, “Model distributed inference in
multi-source edge networks,” in IEEE ICASSP Workshop on Timely and
Private Machine Learning over Networks, Jun. 2023.

[5] P. Li, E. Koyuncu, and H. Seferoglu, “Adaptive and resilient model-
distributed inference in edge computing systems,” IEEE Open Journal
of the Communications Society, vol. 4, pp. 1263–1273, 2023.

[6] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in 2016 23rd
International Conference on Pattern Recognition (ICPR). IEEE, 2016,
pp. 2464–2469.

[7] P. Panda, A. Sengupta, and K. Roy, “Conditional deep learning for
energy-efficient and enhanced pattern recognition,” in 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2016, pp. 475–480.

[8] A. Görmez, V. R. Dasari, and E. Koyuncu, “E2cm: Early exit via
class means for efficient supervised and unsupervised learning,” in 2022
International Joint Conference on Neural Networks (IJCNN), 2022, pp.
1–8.

[9] Y. Kaya, S. Hong, and T. Dumitras, “Shallow-deep networks: Under-
standing and mitigating network overthinking,” in International Confer-
ence on Machine Learning. PMLR, 2019, pp. 3301–3310.

[10] E. Koyuncu, “Memorization capacity of neural networks with condi-
tional computation,” in International Conference on Learning Repre-
sentations, 2023.

[11] A. Görmez and E. Koyuncu, “Pruning early exit networks,” in Workshop
on Sparsity in Neural Networks, Jul. 2022.

[12] A. Görmez and E. Koyuncu, “Dataset pruning using early exit networks,”
in ICML Localized Learning Workshop, Jul. 2023.

[13] V. Papyan, X. Han, and D. L. Donoho, “Prevalence of neural collapse
during the terminal phase of deep learning training,” Proceedings of
the National Academy of Sciences, vol. 117, no. 40, pp. 24 652–24 663,
2020.

[14] L. Hui, M. Belkin, and P. Nakkiran, “Limitations of neural collapse
for understanding generalization in deep learning,” arXiv preprint
arXiv:2202.08384, 2022.

[15] G. Li, L. Li, and J. Zhang, “Hierarchical semantic broadcasting network
for real-time semantic segmentation,” IEEE Signal Processing Letters,
vol. 29, pp. 309–313, 2021.

[16] G. Zhang, J.-H. Xue, P. Xie, S. Yang, and G. Wang, “Non-local
aggregation for rgb-d semantic segmentation,” IEEE Signal Processing
Letters, vol. 28, pp. 658–662, 2021.

[17] Y. Huang, Z. Tang, D. Chen, K. Su, and C. Chen, “Batching soft iou
for training semantic segmentation networks,” IEEE Signal Processing
Letters, vol. 27, pp. 66–70, 2019.

[18] Y. Li, X. Li, C. Xiao, H. Li, and W. Zhang, “Eacnet: Enhanced
asymmetric convolution for real-time semantic segmentation,” IEEE
signal processing letters, vol. 28, pp. 234–238, 2021.

[19] G. Li, L. Li, and J. Zhang, “Biattnnet: bilateral attention for improv-
ing real-time semantic segmentation,” IEEE Signal Processing Letters,
vol. 29, pp. 46–50, 2021.

[20] Y. Yue, W. Zhou, J. Lei, and L. Yu, “Two-stage cascaded decoder
for semantic segmentation of rgb-d images,” IEEE Signal Processing
Letters, vol. 28, pp. 1115–1119, 2021.

[21] E. Yang, W. Zhou, X. Qian, and L. Yu, “Mgcnet: Multilevel gated
collaborative network for rgb-d semantic segmentation of indoor scene,”
IEEE Signal Processing Letters, vol. 29, pp. 2567–2571, 2022.

[22] I. Krešo, J. Krapac, and S. Šegvić, “Efficient ladder-style densenets
for semantic segmentation of large images,” IEEE Transactions on
Intelligent Transportation Systems, vol. 22, no. 8, pp. 4951–4961, 2020.

[23] B. Cheng, I. Misra, A. G. Schwing, A. Kirillov, and R. Girdhar,
“Masked-attention mask transformer for universal image segmentation,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2022, pp. 1290–1299.

[24] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for
semantic urban scene understanding,” in IEEE CVPR, June 2016.

[25] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba,
“Scene parsing through ade20k dataset,” in IEEE CVPR, 2017.

[26] H. Caesar, J. Uijlings, and V. Ferrari, “Coco-stuff: Thing and stuff classes
in context,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2018, pp. 1209–1218.

[27] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu,
Y. Mu, M. Tan, X. Wang et al., “Deep high-resolution representation
learning for visual recognition,” IEEE transactions on pattern analysis
and machine intelligence, vol. 43, no. 10, pp. 3349–3364, 2020.

[28] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[29] Z. Liu, Z. Xu, H.-J. Wang, T. Darrell, and E. Shelhamer, “Anytime
dense prediction with confidence adaptivity,” International Conference
on Learning Representations (ICLR), 2022.

[30] Q. Tang, B. Zhang, J. Liu, F. Liu, and Y. Liu, “Dynamic token pruning
in plain vision transformers for semantic segmentation,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, 2023,
pp. 777–786.

[31] A. Kouris, S. I. Venieris, S. Laskaridis, and N. Lane, “Multi-exit
semantic segmentation networks,” in European Conference on Computer
Vision. Springer, 2022, pp. 330–349.

[32] S. Jung, J. Lee, D. Gwak, S. Choi, and J. Choo, “Standardized max
logits: A simple yet effective approach for identifying unexpected road
obstacles in urban-scene segmentation,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 15 425–15 434.

[33] L. Yang, H. Jiang, R. Cai, Y. Wang, S. Song, G. Huang, and Q. Tian,
“Condensenet v2: Sparse feature reactivation for deep networks,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 3569–3578.

[34] G. Huang, D. Chen, T. Li, F. Wu, L. Van Der Maaten, and K. Q.
Weinberger, “Multi-scale dense networks for resource efficient image
classification,” arXiv preprint arXiv:1703.09844, 2017.

[35] L. Yang, Y. Han, X. Chen, S. Song, J. Dai, and G. Huang, “Reso-
lution adaptive networks for efficient inference,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 2369–2378.

[36] M. Phuong and C. H. Lampert, “Distillation-based training for multi-exit
architectures,” in Proceedings of the IEEE/CVF international conference
on computer vision, 2019, pp. 1355–1364.

[37] D. Zhang, H. Zhang, J. Tang, X.-S. Hua, and Q. Sun, “Self-regulation for
semantic segmentation,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021, pp. 6953–6963.

[38] S. Bai, V. Koltun, and J. Z. Kolter, “Multiscale deep equilibrium
models,” Advances in Neural Information Processing Systems, vol. 33,
pp. 5238–5250, 2020.

[39] K. Liu, Y. Li, N. Xu, and P. Natarajan, “Learn to combine modalities
in multimodal deep learning,” arXiv preprint arXiv:1805.11730, 2018.

[40] A. M. Shervedani, S. Li, N. Monaikul, B. Abbasi, B. Di Eugenio, and
M. Zefran, “An end-to-end human simulator for task-oriented multi-
modal human-robot collaboration,” arXiv preprint arXiv:2304.00584,
2023.

[41] X. Chen, X. Wang, L. Beyer, A. Kolesnikov, J. Wu, P. Voigtlaender,
B. Mustafa, S. Goodman, I. Alabdulmohsin, P. Padlewski et al., “Pali-
3 vision language models: Smaller, faster, stronger,” arXiv preprint
arXiv:2310.09199, 2023.

[42] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng,
“Multimodal deep learning,” in Proceedings of the 28th international
conference on machine learning (ICML-11), 2011, pp. 689–696.

This article has been accepted for publication in IEEE Signal Processing Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LSP.2024.3386110

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://arxiv.org/abs/2202.05924

	Introduction
	Class Based Thresholding
	Experiments and Results
	Ablation Study

	Conclusion
	References

