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Abstract—In recent years, neural network-based black-box
modeling of nonlinear audio effects has improved considerably.
Present convolutional and recurrent models can model audio
effects with long-term dynamics, but the models require many
parameters, thus increasing the processing time. In this paper, we
propose KLANN, a Koopman-Linearised Audio Neural Network
structure that lifts a one-dimensional signal (mono audio) into a
high-dimensional approximately linear state-space representation
with nonlinear mapping, and then uses differentiable biquad
filters to predict linearly within the lifted state-space. Results
show that the proposed models match the high performance of
the state-of-the-art neural models while having a more compact
architecture, reducing the number of parameters by tenfold, and
having interpretable components.

I. INTRODUCTION

NALOG audio effects are used for their distinct sound

due to nonlinearities in the circuitry. Thus, as music
production is digitalised, there is a need for emulations of
audio circuitry, which is referred to as virtual analog (VA)
modeling in the literature. Black-box VA methods use only
the input and output measurements of an audio circuitry under
study to infer the system’s behavior. Classic methods, such as
the Volterra series [1], often lead to complex models whose
parameters are difficult to estimate and interpret.

In recent years, several black-box models for modeling
audio effects using deep neural networks (DNNs) have been
proposed. Previous solutions include convolution networks
(CNNs) [2, 3] as well as recurrent neural networks (RNNs)
using either a long short-term Memory (LSTM) or a gated
recurrent unit (GRU) [4]. Both CNNs and RNNs can operate
in real-time [5] but at a relatively high computation cost.
Approaches to make CNNs more expressive and lightweight
include rapidly growing the dilation factors, increasing the net-
work receptive field [6], and using temporal feature-wise linear
modulation [7, 8] to modulate the intermediate features of the
CNN [9]. RNNs also remain popular due to their relatively
low cost, connection to state-space models [10, 11, 12], and
applicability to external control inputs [13].

While most of the recent work has focused on audio ef-
fects with relatively short-term dynamics, modeling long-term
dynamics remains challenging. Examples of such challenging
systems include fuzz pedals [4] and compressors [14]. Recent
efforts have made progress towards modeling long-term de-
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pendencies [9], but the models are still relatively expensive
and hard to interpret.

The Koopman operator can be used to lift a nonlinear
problem into an infinite-dimensional space where the prob-
lem becomes linear [15]. Koopman networks approximately
linearise nonlinear systems by approximating the Koopman
operator and can be used to predict the evolution of nonlinear
differential equations [16]. The model proposed works by
first approximately linearising a nonlinear dynamical system
with nonlinear mapping, then solving the approximately linear
dynamical system, and finally, nonlinearly mapping the system
back to the original state. In audio effect modeling, Koopman
networks provide an appealing framework to build on. Specif-
ically, we can lift a one-dimensional audio signal to a high-
dimensional approximately linear state-space representation
and use classic audio DSP filter structures to model the
dynamics on each lifted dimension, similarly to Koopman-
based nonlinear system identification [17].

Differentiable biquad filters (second order IIR filters) [18,
19] are a good candidate for implementing the linear predic-
tions between the nonlinear mappings, as they have multiple
advantageous properties. First, they are highly expressive in
relation to their parameter count and can produce arbitrarily
long responses. Second, they are interpretable with common
filter analysis techniques and their stability properties are
well understood. Third, they are suitable for both frequency
domain filtering for fast parallel training on GPUs [20, 21],
and fast sequential inference on CPUs [12]. Differentiable
biquad filters have been used to model distortion pedals using
a Wiener-Hammerstein structure [18] and a series of differen-
tiable parametric equalizers with nonlinearity in between [22]
but did not yet match the performance of DNN baselines.

This paper presents KLANN, a Koopman-Linearised Audio
Neural Network structure for black-box modeling audio ef-
fects. The method comprises 1) a memoryless neural network
that lifts the data into a high-dimensional space, 2) a set
of differentiable biquad filters that model the approximately
linearised dynamics, and 3) another memoryless network that
maps the high-dimensional solution back to the audio space.
The proposed method is evaluated on two dynamic range
compressors and a fuzz distortion effect to test its performance
on long-term dynamics. Furthermore, we propose an end-to-
end two-stage training scheme where the first stage optimises
the time domain loss, and the second stage optimises both the
time domain and frequency domain losses.

The remainder of this paper is structured as follows. Sec-
tion II presents the KLANN structure and our two network
variants. In Section III, our models are evaluated and compared
against state-of-the-art convolutional and recurrent black-box
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models. The results show that the proposed models match
the high performance of DNN baselines while using fewer
parameters and having interpretable components. Conclusions
and future work are discussed in section IV.

II. METHOD

Given input and output signals = and y of an audio effect
f(x) = y with fixed control parameters, we want to find a
function f () that produces a signal gy that is perceptually
indistinguishable from the real signal y. We propose two
DNNs for f(z) both consisting of the KLANN structure. In
the following, we explain the stages and overall structure.

A. Gated linear unit multilayer perceptron

The nonlinear mappings are gated linear unit multilayer
perceptrons (GLU MLP) that consist of varying-sized fully
connected (FC) layers using the gated linear unit (GLU) [23]
nonlinearity. The input for an FC layer is a signal X e R"™*"n
with n samples and m;, hidden layer size. Thus, a GLU layer
is defined as follows:

GLU(X) = (XWiin + biin) © 0 (X Weaie + bgae), (1)

where Wi, and Weyye € R™n*ow are the weight matrices,
Moyt 18 the next hidden layer size, by, and bgye € R™o are
the bias vectors, o is the logistic sigmoid function, and © is
the element-wise product between matrices. The GLU layers
increase in size in the first GLU MLP and decrease in the
second. The final layer consists of a linear mapping.

B. Differentiable biquad filter

Digital state variable filters (DSVF) [24] are used as the
biquad filter type as they can learn any biquad with added
interpretability, faster convergence, and better performance
when compared to a regular biquad filter [18]. DSVFs are
a linear combination of a lowpass, bandpass, and highpass
biquad filter with weights myp, mpp, and mygp controlling the
mixing ratio between them, respectively. DSVFs share a cutoff
c and a resonance R between its three filter types. The transfer
function is defined as follows [24]:

B mypbrp(2) + mppbp(2) + mupbup(2)

14+ 2+ 2Rc+ (22 —2)z7 1+ (1 + 2 — 2Rc)z;22)’
where bip(z) = ¢® +2c?271 + 272 is the lowpass, bpp(z) =
c—cz 72 is the bandpass, and byp(2) = 1 — 2271 + 272 is the
highpass filter.

Following previous research [19], the cutoff c is restricted
between frequencies 0 < ¢ < =« with the activation
tan(mo(x)/2) and a softplus activation is applied to the
resonance R to satisfy the stability condition R > 0. The
cutoff and resonance are initialised as 0 and the weights as 1.

Filtering is performed in frequency domain [22, 21] to speed
up the training process, and the overlap-add method can also
be used but at the cost of accuracy [20, 19]. Frequency domain
filtering is carried out individually for each biquad. First, a
biquad filter is frequency-sampled by using the discrete Fourier
transform (DFT) on the numerator, and the denominator of its
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transfer function given in Eq. (2) [25]. This yields an FIR
filter that is a truncated version of the biquad filter response
in the time domain. Next, the DFT of the input signal for
a biquad is taken, and the signal is multiplied with the FIR
filter. Lastly, the inverse discrete Fourier transform (IDFT)
returns the filtered signal to the time domain. If the overlap-add
method is used, the overlapping segments are summed after
the IDFT. The DFTs and IDFTs are zero-padded to a length of
a power of two to employ an efficient fast Fourier transform
(FFT) given by 2092 @N=11 [25] where N represents the
length of the input signal in samples. N also dictates the
length of the truncated biquad filter. Thus, N should be picked
high enough to minimise time-aliasing [19]. Inference is done
recursively in the time domain.

C. Farallel and parallel-series structures

Block diagrams of two networks using the KLANN struc-
ture are shown in Fig. 1. Both networks use two GLU MLPs
to nonlinearly lift the input audio into a K -dimensional state-
space and to restore the outputs of the lifted state-space into
the original state, respectively. K corresponds to the number
of biquads. The parallel KLANN shown in Fig. 1a has only
biquad filters in the lifted state-space, making it fully linear,
whereas the parallel-series KLANN shown in Fig. 1b does
not assume the state-space to be fully linear as each biquad
is connected to the next one using a single FC layer with the
GLU nonlinearity followed by a linear mapping. Thus, the
parallel-series KLANN can learn more complex lifted state-
spaces compared to the parallel KLANN.

Both networks are interpretable as the biquad filters are the
only part with memory. However, some interpretability is lost
in the parallel-series KLANN as all nonlinearities do not occur
in the GLU MLPs. Nevertheless, the biquad filters and the
nonlinear mappings can be analyzed to determine the learned
time dependencies and nonlinearities, respectively. Reference
implementation is provided at the accompanying website !

D. Loss function

A combination of time and frequency domain losses are
used for training. The mean squared error (MSE) is used as the
time domain loss, and the multi-resolution short-time Fourier
transform (MR STFT) [26, 27] is used as the frequency domain
loss. MR STFT is defined as follows:

1M
Lar = 57 m; [Lc(@:y) + Lan(3:9)], 3)
where M is the resolution of an STFT, and L. and L, denote

the spectral convergence and the spectral log-magnitude losses,
respectively. These are defined as [28]:

Le(d.y) = [ISTET(y)| — [STET(9)|ll ¢
o IISTET(y)][l ’

N 1 N
Lin(9,y) = 5 log [STFT(y)| — log [STET(g)[[l;,  (5)

where ||-|| and ||-||; denote the Frobenius and L; norms,
respectively, and P is the number of elements in an STFT
magnitude.

“4)

Uhttps://github.com/ville14/KLANN
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(a) Parallel KLANN.

(b) Parallel-series KLANN.

Fig. 1: Block diagrams of the two proposed KLANN model variants. The KLANN model is a sequence of memoryless
nonlinear lifting, multiple linear filters, and a nonlinear combination. The inputs to the FC layer in the parallel-series KLANN

are concatenated.

E. Training

The model parameters are updated in shuffled mini-batches.
For each mini-batch, the last 1024 samples are used to
calculate the loss to allow biquad filters time to stabilise. The
audio effect under study determines the stabilisation time. The
exact time is not required, but it has to be longer than the time-
dependency of the audio effect under study.

The training process is divided into two stages. In the first
stage, a model is trained with the MSE, and in the second
stage, the model is fine-tuned using the sum of the MSE and
the weighted MR STFT with the weight set to 0.001. The MR
STFT has different window lengths, hop sizes, and DFT sizes.
Window lengths 600, 240, and 100, hop sizes 120, 50, and 25,
and DFT sizes 1024, 512, and 256 are used. Adam [29] is used
with the initial learning rate set to 0.001, and the batch size is
set to 50 on both stages. 2000 and 1000 epochs are allocated
for the first stage and the second stage, respectively.

F. Dataset

All models are trained on three audio effects: a digital
compressor, an analog compressor, and a digital fuzz pedal
called the MCompressor?, the LA-2A3, and the Face Bender*,
respectively. The dataset is from [9], which is constructed
using the SignalTrain dataset [14] for modeling the LA-2A and
recordings from the IDMT-SMT-Guitar dataset [30] are used
for modeling the digital audio effects. All audio is sampled
at 44.1kHz. The audio is divided into mini-batches using a
sliding window with a hop size of 1024 samples. This way,
the loss function is calculated utilising all possible samples. If
the overlap-add filtering method is used, the mini-batch length
is a multiple of N. Otherwise, N sets the length of the mini-
batches. In this work, we use a single long FFT for filtering
instead of over-lap add, since the biquad filters remain constant
in any given minibatch.

The audio effects are trained with set configurations. The
MCompressor is trained with 1 ms attack and 1000 ms release
times. The LA-2A dataset has fixed attack and release times
with an average attack time of 10ms and a release time of

Zhttps://www.meldaproduction.com/MCompressor
3https://www.uaudio.com/blog/la- 2a-collection-tips-tricks/
“http://distorqueaudio.com/plugins/face-bender.html
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about 60ms for 50% of the release, and anywhere from 1
to 15 seconds for the rest. The time-constant of the Face
Bender is unknown. Therefore, the MCompressor is trained
using N=65536 samples, and both the LA-2A and the Face
Bender are trained using N=32768 samples. This allows the
biquad filters about 1.46s and 0.74 s to stabilise, respectively.

Amplitude

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)
Fig. 2: Learned normalised IRs of a small parallel model for
the MCompressor with 1000 ms and 250ms release times.
The first few samples are ignored before normalisation. Most
responses decay within a few milliseconds.
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Fig. 3: Learned corresponding magnitude responses of the
small parallel KLANN model for the MCompressor with
1000 ms release time shown in Fig. 2.

III. EVALUATION

The parallel KLANN and the parallel-series KLANN are
evaluated with two configurations: small and large. The small
configuration has hidden layer sizes 3, 4, and 5 for the first
GLU MLP and 5 biquad filters. The large configuration has
hidden layer sizes 5, 10, and 15 for the first GLU MLP and 15
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TABLE I: Model sizes and training results. The best results are highlighted.

Face Bender MCompressor LA-2A
Model Layer sizes #biquads Params. ESRgg | MRSTFT | ESRgg| MRSTFT | ESRgqg| MR STFT |

Wiener-Hammerstein 20, 20, 20 2 911 -20.836 0.920 -11.476 0.686 -9.003 1.073
small parallel 345-54,3 5 291 -21.768 0.620 -26.421 0.331 -14.424 0.661
large parallel 5,10, 15 - 15, 10, 5 15 1701 -26.792 0.441 -29.228 0.314 -15.946 0.600
small parallel-series 3,4,5-5,4,3 5 435 -31.511 0411 -30.808 0.307 -14.740 0.665
large parallel-series 5,10, 15 - 15,10, 5 15 2205 -45.773 0.240 -36.192 0.282 -16.869 0.582
GCNTF-1 - - 38.9k -34.931 0.308 -33.488 0.302 -19.433 0.539
GCNTF-3 - - 71.1k -41.125 0.264 -32.339 0.304 -20.183 0.512
GCNTF-250 - - 74.3k -34.8035 0.348 -30.254 0.311 -18.3785 0.586
GCNTF-2500 - - 48.2k -34.515 0.327 -35.632 0.293 -19.621 0.550
LSTM-32 32 - 4513 -39.497 0.374 -30.938 0.309 -15.501 0.669
LSTM-96 96 - 38.1k -39.880 0.257 -30.030 0.317 -15.488 0.655

TABLE II: Impact of the training process. Single-stage training uses the sum of the MSE and the MR STFT, and two-stage
training uses first the MSE and then the sum of the MSE and the MR STFT. The MR STFT is weighted by 0.001.

Face Bender MCompressor LA-2A
Model Loss function Epochs ESR¢g | MRSTFT | ESRgg ! MRSTFT| ESRgg!| MR STFT |

small parallel-series single-stage 3000 -22.083 0.525 -29.323 0.311 -14.588 0.652
P two-stage 2000, 1000 -31.511 0.411 -30.808 0.307 -14.740 0.665
GCNTE-3 single-stage 3000 -41.076 0.252 -32.415 0.297 -17.572 0.513
two-stage 2000, 1000 -41.125 0.264 -32.339 0.304 -20.183 0.512

LSTM-32 single-stage 3000 -41.357 0.260 -30.411 0.309 -12.846 0.680
two-stage 2000, 1000 -39.497 0.374 -30.938 0.309 -15.501 0.669

biquad filters. The second GLU MLPs have the hidden layer
sizes reversed. The GLU layer in the parallel-series KLANN
has a hidden layer size of 5.

We compare state-of-the-art convolutional and recurrent
networks called the GCNTF [9] and LSTM [4], respectively.
We use the implementation provided in [9]. Both networks
are trained using the two-stage training scheme similar to our
models. The batch size for the GCNTF and LSTM models are
set to 8 and 50, respectively. We also compare a differentiable
Wiener-Hammerstein model with two DSVF filters proposed
in [18].

The error-to-signal ratio in decibels (ESR4p) and the MR
STFT values are used to evaluate the models. The ESRygp is
calculated as follows:

27]:;_01 |yn - ?)n‘g
S0 lunl?
where y and ¢ are the target signal and the output signal of

the model, respectively.

Results of the training are shown in Table I, and audio
examples are provided in the accompanying website>. The
large parallel-series model performs the best between our
models. It achieves the smallest ESRgg and MR STFT values
in modeling the Face Bender and it models the MCompressor
with similar accuracy to the best GCNTF model. However, the
GCNTF-3 model achieves the best accuracy in modeling the
LA-2A. Nevertheless, we found it hard to distinguish audible
differences between our model and the GCNTF model. Even
the small parallel model produced convincing results, although

ESRdB =10 loglo s (6)

Shttps://ville14.github.io/KLANN-examples/
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it lacks modeling of some high-frequency content in the Face
Bender.

Table II shows the impact of the training process for the
small parallel-series, GCNTF-3, and the LSTM-32 models.
Two-stage training is beneficial when the MSE value, which
is good at modeling lower frequencies, is better optimized
in the first stage with no MR STFT loss present as in the
case with the Face Bender for the small parallel-series model.
The LA-2A for the GCNTF-3 and LSTM-32 models also see
improvements. However, the Face Bender was modeled better
with single-stage training for the LSTM-32 model.

Fig. 2 shows two learned impuse responses (IRs) of a small
parallel model trained on the MCompressor with 1000 ms
and 250ms release times. Fig. 3 shows the corresponding
magnitude responses of the 1000 ms release time case. An
exponentially decaying IR that matches the actual release time
was learned for both cases. These are plotted as solid lines
and the other learned biquads are plotted as dashed lines. The
parallel-series model also learns similar IRs.

IV. CONCLUSION

This work presents a Koopman-based neural network struc-
ture for black-box modeling audio effects. Two networks
were proposed, called the parallel KLANN and the parallel-
series KLANN. Our models use significantly fewer parameters
than the state-of-the-art DNN models while still producing
perceptually convincing results. Conditioning the network on
variable control positions remains as future work.


https://ville14.github.io/KLANN-examples/

This article has been accepted for publication in IEEE Signal Processing Letters. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/LSP.2024.3389465

SUBMITTED TO IEEE SIGNAL PROCESSING LETTERS

(1]

(2]

(3]

[4

—

[5

—

(6]

(7]

(8

—_—

(91

(10]

(11]

[12]

[13]

[14]

(15]

[16]

(17]

(18]

(19]

[20]

REFERENCES

T. Hélie, “Volterra series and state transformation for real-time
simulations of audio circuits including saturations: Application
to the Moog ladder filter,” IEEE transactions on audio, speech,
and language processing, vol. 18, no. 4, pp. 747-759, 2009.
E.-P. Damskigg, L. Juvela, E. Thuillier, and V. Viliméki, “Deep
learning for tube amplifier emulation,” in ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 1EEE, 2019, pp. 471-475.

M. A. M. Ramirez and J. D. Reiss, “Modeling nonlinear audio
effects with end-to-end deep neural networks,” in ICASSP 2019-
2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 1EEE, 2019, pp. 171-175.

A. Wright, E.-P. Damskégg, V. Vilimiki et al., “Real-time
black-box modelling with recurrent neural networks,” in 22nd
international conference on digital audio effects (DAFx-19),
2019, pp. 1-8.

A. Wright, E.-P. Damskigg, L. Juvela, and V. Vilimiki, “Real-
time guitar amplifier emulation with deep learning,” Applied
Sciences, vol. 10, no. 3, p. 766, 2020.

C. J. Steinmetz and J. D. Reiss, “Efficient neural networks for
real-time modeling of analog dynamic range compression,” in
Audio Engineering Society Convention 152. Audio Engineering
Society, 2022.

E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville,
“FiLM: Visual reasoning with a general conditioning layer,” in
Proceedings of the AAAI conference on artificial intelligence,
vol. 32, no. 1, 2018.

S. Birnbaum, V. Kuleshov, Z. Enam, P. W. W. Koh, and
S. Ermon, “Temporal FILM: Capturing long-range sequence de-
pendencies with feature-wise modulations.” Advances in Neural
Information Processing Systems, vol. 32, 2019.

M. Comunita, C. J. Steinmetz, H. Phan, and J. D. Reiss,
“Modelling black-box audio effects with time-varying feature
modulation,” in Proc. ICASSP. 1EEE, 2023, pp. 1-5.

J. D. Parker, F. Esqueda, and A. Bergner, “Modelling of
nonlinear state-space systems using a deep neural network,” in
Proc. DAFx, 2019.

A. Peussa, E.-P. Damskégg, T. Sherson, S. Mimilakis, L. Juvela,
A. Gotsopoulos, and V. Viliméki, “Exposure bias and state
matching in recurrent neural network virtual analog models,” in
Proc. Int. Conference on Digital Audio Effects (DAFx), 2021,
pp. 284-291.

A. Gu, K. Goel, and C. Re, “Efficiently modeling long se-
quences with structured state spaces,” in Proc. ICLR, 2022.

L. Juvela, E.-P. Damskégg, A. Peussa, J. Mikinen, T. Sherson,
S. I. Mimilakis, K. Rauhanen, and A. Gotsopoulos, “End-to-
end amp modeling: from data to controllable guitar amplifier
models,” in Proc. ICASSP, 2023, pp. 1-5.

S. H. Hawley, B. Colburn, and S. I. Mimilakis, “SignalTrain:
Profiling audio compressors with deep neural networks,” arXiv
preprint arXiv:1905.11928, 2019.

B. O. Koopman, “Hamiltonian systems and transformation
in Hilbert space,” Proceedings of the National Academy of
Sciences, vol. 17, no. 5, pp. 315-318, 1931.

B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for
universal linear embeddings of nonlinear dynamics,” Nature
communications, vol. 9, no. 1, p. 4950, 2018.

A. Mauroy and J. Goncalves, “Koopman-based lifting tech-
niques for nonlinear systems identification,” IEEE Transactions
on Automatic Control, vol. 65, no. 6, pp. 2550-2565, 2020.

B. Kuznetsov, J. D. Parker, and F. Esqueda, “Differentiable IIR
filters for machine learning applications,” in Proc. Int. Conf.
Digital Audio Effects (eDAFx-20), 2020, pp. 297-303.

S. Lee, H.-S. Choi, and K. Lee, “Differentiable artificial re-
verberation,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 30, pp. 2541-2556, 2022.

L. Juvela, B. Bollepalli, J. Yamagishi, and P. Alku, “GELP:

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

GAN-excited linear prediction for speech synthesis from mel-
spectrogram,” in Proc. Interspeech, 2019, pp. 694—698.

S. Nercessian, “Neural parametric equalizer matching using
differentiable biquads,” in Proc. Int. Conf. Digital Audio Effects
(eDAFx-20), 2020, pp. 265-272.

S. Nercessian, A. Sarroff, and K. J. Werner, “Lightweight and
interpretable neural modeling of an audio distortion effect us-
ing hyperconditioned differentiable biquads,” in Proc. ICASSP,
2021, pp. 890-894.

Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language
modeling with gated convolutional networks,” in International
conference on machine learning. PMLR, 2017, pp. 933-941.
A. Wishnick, “Time-varying filters for musical applications,” in
Proc. 17 Int. Conf. Digital Audio Effects (DAFx-14), Erlangen,
Germany, September 2014, pp. 69-76.

C. J. Steinmetz, N. J. Bryan, and J. D. Reiss, “Style transfer
of audio effects with differentiable signal processing,” Journal
of the Audio Engineering Society, vol. 70, no. 9, pp. 708-721,
2022.

R. Yamamoto, E. Song, and J.-M. Kim, “Parallel WaveGAN: A
fast waveform generation model based on generative adversarial
networks with multi-resolution spectrogram,” in Proc. ICASSP.
IEEE, 2020, pp. 6199-6203.

C. J. Steinmetz and J. D. Reiss, “auraloss: Audio focused loss
functions in pytorch,” in Digital music research network one-
day workshop (DMRN+ 15), 2020.

S. O. Arik, H. Jun, and G. Diamos, “Fast spectrogram inversion
using multi-head convolutional neural networks,” IEEE Signal
Processing Letters, vol. 26, no. 1, pp. 94-98, 2018.

D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in International Conference on Learning Representations
(ICLR), San Diega, CA, USA, 2015.

C. Kehling, J. AbeBer, C. Dittmar, and G. Schuller, “Automatic
tablature transcription of electric guitar recordings by estimation
of score-and instrument-related parameters.” in DAFx, 2014, pp.
219-226.



	Introduction
	Method
	Gated linear unit multilayer perceptron
	Differentiable biquad filter
	Parallel and parallel-series structures
	Loss function
	Training
	Dataset

	Evaluation
	Conclusion

