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Convergence of Expectation-Maximization

Algorithm with Mixed-Integer Optimization
Geethu Joseph

Abstract—The convergence of expectation-maximization (EM)-
based algorithms typically requires continuity of the likelihood
function with respect to all the unknown parameters (optimiza-
tion variables). The requirement is not met when parameters
comprise both discrete and continuous variables, making the
convergence analysis nontrivial. This paper introduces a set of
conditions that ensure the convergence of a specific class of EM
algorithms that estimate a mixture of discrete and continuous
parameters. Our results offer a new analysis technique for itera-
tive algorithms that solve mixed-integer non-linear optimization
problems. As a concrete example, we prove the convergence
of an existing EM-based sparse Bayesian learning algorithm
that estimates the state of a linear dynamical system with
jointly sparse inputs and bursty missing observations. Our results
establish that the algorithm converges to the set of stationary
points of the maximum likelihood cost with respect to the
continuous optimization variables.

Index Terms—Discrete non-linear optimization, global conver-
gence theorem, sparse Bayesian learning, bursty missing data

I. INTRODUCTION

The Expectation-Maximization (EM) algorithm is a general

technique for maximum likelihood or maximum a posteriori

estimation [1], [2]. It is a crucial ingredient in well-known

algorithms like Baum-Welch [3], inside-outside [4], sparse

Bayesian learning (SBL) [5], and their numerous variants.

EM’s popularity is due to its simplicity, stability (mono-

tonic increase in likelihood), and convergence guarantees for

many statistical problems. The convergence analysis of EM,

presented in [6], establishes conditions under which EM

converges to a stationary point of the likelihood function.

The literature also offers convergence analyses for specific

cases, such as EM for Gaussian mixtures [7] and EM with

squared iterative methods [8]. However, these analyses assume

that the likelihood function is continuous in all unknown

hyperparameters, implying that the parameters belong to an

open set and are all continuous. This assumption may not hold

in general. For example, the EM-based SBL framework [9] is

used to estimate sparse state of a linear dynamical with missing

observations, where the unknown state vector belongs to an

open set, while the unknown missing data status is discrete

(either missing or not missing). Some motivating applications

for this problem include identifying missing data indices in

occlusions due to nonlinear energy harvesting or environmen-

tal factors in wireless networks (motion tracking [10], net-

work traffic reconstruction [11], localization refinement [12],
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urban traffic sensing improvement [13], and structural health

monitoring [14], [15]), satellite imaging systems [16], [17],

and downlink channel estimation via feedback through a

bursty channel [9]. Despite demonstrating good empirical

performance of the EM algorithm [9], its convergence becomes

nontrivial due to discrete parameters, posing a challenge to

existing EM convergence results. Insipred by this setting,

we study the convergence of the EM algorithm with both

continuous and discrete hyperparameters.

The contributions of this paper are twofold. First, we relax

the assumption that the set of unknowns estimated by EM is

purely continuous, allowing for a general set that comprises

both continuous and discrete parameters. We derive mild

conditions ensuring the convergence of EM to a stationary

point of the likelihood function. Notably, when the unknowns

belong to an open set, our results reduce to those of [6].

Second, we apply these results to establish the convergence

of the EM-based SBL algorithm presented in [9].

II. STATISTICAL MODEL AND CONVERGENCE RESULT

Consider the statistical model which generates observations

Y , unobserved latent data X , and unknown parameters θ∗ ∈
Θ. We assume that a part of the parameter is continuous and

the other part is discrete and finite, i.e., Θ ⊆ G ×H and

θ∗ =
[

γT αT
]T

, (1)

where γ ∈ G and α ∈ H. Here, G ⊆ RN is a set without

isolated points, and H ⊆ RK is a finite (countable) set. For

the ease of exposition, we use θ and (γ,α) interchangeably.

Let p(Y ,X; θ∗) be the joint distribution of data (Y ,X)
conditioned on the parameter θ∗. Then, the maximum likeli-

hood (ML) estimate of the unknown θ∗ is

argmax
θ∈Θ

L(θ), (2)

where L(θ) is the likelihood function given by

L(θ) = log p(Y ; θ) = EX{log p(Y ,X; θ)}. (3)

If the above optimization is not tractable, we can use the

EM algorithm to solve (2). The EM algorithm is an iter-

ative algorithm, with each iteration comprising an expec-

tation step (E-step) and a maximization step (M-step). Let

θ(r) = [γ(r)T α(r)T]T be the EM iterate in the (r − 1)th
iteration. In the rth iteration, the E-step computes the expected

log-likelihood of θ with respect to the distribution of X

conditioned on the current iterate θ(r) and observations Y ,

Q(θ; θ(r)) = EX|Y ,θ(r){log p(Y ,X; θ)}. (4)

http://arxiv.org/abs/2401.17763v2
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The M-step maximizes this function with respect to θ to obtain

the new iterate θ(r+1)
, i.e.,

argmax
θ∈Θ

Q(θ; θ(r)). (5)

So, the r-th EM iteration can be summarized as a mapping

G : Θ → Θ, i.e.,

θ(r+1) = G(γ(r),α(r)) = argmax
θ∈Θ

Q(θ; θ(r)). (6)

Next, we present the main result of the section, which

provides a list of sufficient conditions for the EM algorithm to

converge to a stationary point of the ML cost function in (2).

Theorem 1. Let {θ(r)}∞r=0 be the sequence generated by

the EM algorithm, as summarized in (6), to solve the ML

optimization problem in (2). Assume the following conditions,

1) There exists a constant C ∈ R such that L(θ(0)) ≤ C,

for any θ(0) ∈ Θ.

2) The level set {θ : L(θ) ≥ L(θ(r))} is compact, for any

integer r > 0.

3) For any α∗ ∈ H, the iteration mapping G(γ,α∗) in (6)

is closed at all values of [γT αT

∗ ]
T ∈ Θ.

4) The function Q(θ; θ(r)) is a continuous function of γ and

γ(r), for a fixed value of α and α(r), where θ and θ(r)

take the form (1) and (6), respectively.

Then, the sequence of iterates {θ(r)}∞r=1 converges to a subset

of S∗ over which L(θ) is a constant. Here,

S∗ = {θ ∈ Θ : θ =
[

γ ∈ RN α ∈ H
]

and ∇γL(θ) = 0},
(7)

where ∇γ denote the gradient with respect to γ.

Proof. See Appendix A.

Here, Conditions 1 and 2 refer to the likelihood, and

Conditions 3 and 4 are linked to the iterate update procedure.

Conditions 1, 2, and 4 are similar to (8), (6), and (7) in [6],

respectively. Condition 3 is required for the global convergence

theorem [18] to hold. Further, our analysis generalizes the EM

convergence result in [6]. Using a similar proof technique,

we can extend the other results in [6] to our setting (for

example, the results on generalized EM). Furthermore, if

the stationary points of the likelihood cost are isolated, the

algorithm converges to a single point. Also, we assume that

H is finite, such as any bounded subset of integers or rational

numbers. There are estimation problems where this assumption

holds, and we give an example in the next section.

III. ANALYSIS OF KALMAN SBL FOR STATE ESTIMATION

OF A LINEAR SYSTEM WITH MISSING OUTPUTS

In this section, we prove convergence guarantees to the EM-

based SBL algorithm in [9] using Theorem 1. The algorithm

aims to estimate the states of a linear dynamical system with

jointly sparse inputs and missing observations at unknown time

instants [9]. Specifically, we consider a discrete-time linear

dynamical system given by

xk = Dxk−1 + uk and yk = α∗
kAxk +wk. (8)

Here, xk ∈ Rn,uk ∈ Rn, and yk ∈ Rm are the state, input,

and observation at time k, respectively. Also, wk ∈ R
m is the

zero-mean Gaussian distributed measurement noise at time k
whose variance is σ2. Also, D ∈ Rn×n is the state transition

matrix, and A ∈ Rm×n is the output matrix. The inputs are

jointly sparse, and the initial state x0 = 0 ∈ Rn. Further,

α∗
k ∈ {0, 1} represents whether the signal part Axk is missing

or not in the observation yk. The missing data indicator α∗
k for

k = 1, 2, . . . follows a hidden Markov model: for any integer

k > 0 and i, j ∈ {0, 1}, we have P{α∗
k = i|α∗

k−1 = j} = pj ,

if i = j. For a given integer value of K < ∞, the algorithm

aims to estimate the state matrix X using the output matrix

Y when α∗ is unknown, where we define

X ,
[

x1 x2 . . . xK

]

∈ R
N×K (9)

Y ,
[

y1 y2 . . . yK

]

∈ R
m×K (10)

α∗ ,
[

α∗
1 α∗

2 . . . α∗
K

]⊺

∈ {0, 1}K. (11)

The SBL framework assumes a fictitious Gaussian prior on

the sparse vectors with a common matrix with γ∗ ∈ RN
+

along the diagonal, i.e., p(xk|γ∗) = N (0, diag{γ∗}). Then,

we jointly estimate θ∗ = [γ∗ α∗] ∈ RN
+ × {0, 1}K. The

resulting Q function in the M-step is

Q(θ; θ(r)) = EX|Y ,θ(r){log [p (Y |X,α) p (α) p (X,γ)]}
(12)

= EX|Y ,θ(r){log p (Y |X,α)}+ log p (α)

+ EX|Y ,θ(r){log p (X,γ)}. (13)

So, the optimization problem in the M-step is separable in the

γ and α. Since the optimization is separable, the mapping G
in (6) can be decomposed as follows:
[

γ(r+1)

α(r+1)

]

∈ G(γ(r),α(r)) =

[

Gγ

(

γ(r),α(r)
)

⊂ R
n
+

Gα

(

γ(r),α(r)
)

⊂ H

]

. (14)

The resulting algorithm uses the Kalman smoothing to com-

pute Gγ

(

γ(r),α(r)
)

and Viterbi algorithm to Gα

(

γ(r),α(r)
)

.

Further, the set Gγ

(

γ(r),α(r)
)

is a singleton set whereas

Gα

(

γ(r),α(r)
)

need not be. Also, for a given α(r), the

mapping G(γ(r),α(r)) is continuous in γ(r). Please refer to [9]

for more details. Using the above properties of the algorithm,

we derive the convergence results.

We start with the optimization problem (2) that the algo-

rithm solves. To compute L(θ) = log p(Y ; θ), we note that

Y is Gaussian distributed with zero mean. Given θ, we derive

yk = αkA
∑k

j=1 D
k−juj + wk from (8). Subsequently,

the covariance matrix RY (θ) ∈ RKm×Km of the vectorized

version of Y is

RY (θ) = (diag{α} ⊗A) D̃

× (I ⊗ diag{γ}) D̃
T
(

diag{α} ⊗AT

)

, (15)

where diag{·} represents a diagonal matrix with entries of the

argument vector along the diagonal and D̃ ∈ RKN×KN as

D̃ =











I 0 . . . 0

D I . . . 0

...
. . .

DK−1 DK−2 . . . I











. (16)



JOURNAL OF LATEX CLASS FILES 3

By simplifying (2) using (15), the objective function of an

optimization problem equivalent to (2) reduces to

L(θ) = −
Km

2
log(2π)−

1

2
log

∣

∣RY (θ) + σ2I
∣

∣

−
1

2
yT

(

RY (θ) + σ2I
)−1

y. (17)

With the objective function defined, we are now ready to

state the convergence result.

Theorem 2. Suppose that the noise variance σ2 > 0. Let the

iterates generated by the Bayesian state estimation algorithm

in [9] be θ(r) ∈ RN × H. Then, the sequence of iterates

{θ(r)}∞r=1 converges to a subset of S∗ over which L(θ) is a

constant. Here,

S∗ = {θ =
[

γ ∈ RN α ∈ H
]

: ∇γL(θ) = 0}, (18)

where ∇γ denote the gradient with respect to γ.

Proof. See Appendix B.

Hence, our generalized result in Theorem 1 guarantees that

the SBL variant in [9] with discrete parameters converges to

a stationary point of the ML cost function.

IV. CONCLUSION

We derived the conditions for the convergence of the EM

algorithm with discrete unknown parameters. As an illus-

tration, we demonstrated the convergence of the EM-based

SBL algorithm outlined in [9], proving its convergence to

the set of stationary points of the maximum likelihood cost.

Extending the results to the generalized class of Majorization-

Minimization algorithms is an interesting future work.

APPENDIX A

PROOF OF THEOREM 1

Our proof is adapted from the proofs of EM algorithm

convergence in [6] and Zangwill’s convergence theorem [18].

Our proof relies on some properties of the algorithm iterates

as listed by the following preliminary lemmas:

Lemma 3 ( [19, Theorem 8.1]). The EM algorithm formula-

tion guarantees the following from (2):

L(θ) = Q(θ; θ(r)) + g(θ; θ(r)), (19)

where Q is defined in (4) and we define

g(θ; θ(r)) = EX|Y ,θ(r){− log p(X |Y , θ)}. (20)

Lemma 4 (Gibbs’ inequality [20]). For any θ ∈ Θ, the

function g defined in (20) satisfies g(θ; θ(r)) ≥ g(θ(r); θ(r)).

Lemma 5. The sequence of function values {L(θ(r)), r ≥ 1}
defined in (2) is monotonically non-decreasing and convergent.

Proof. From (6), in every iteration r,

Q(θ(r+1); θ(r)) ≥ Q(θ(r); θ(r)). (21)

From Lemmas 3 and 4, and (21), L(θ(r+1) − L(θ(r)) ≥ 0.

Consequently, the sequence {L(θ(r)), r ≥ 1} is monotonically

non-decreasing, and is bounded from above by Assumption 1.

Thus, it convergences to a single point.

Lemma 6. If θ(r) /∈ S∗ for some r > 0, then we have the

relation L(θ(r+1; θ(r)) > L(θ(r); θ(r)).

Proof. Using Lemma 3, we get

∇γQ(θ(r); θ(r)) +∇γg(θ
(r); θ(r)) 6= 0. (22)

Also, from Lemma 4, we have

g([γT α(r)T]T; θ(r)) ≥ g([γ(r)T α(r)T]
T

; θ(r)). (23)

Hence, ∇γg(θ
(r); θ(r)) = 0, and as a result, from (22),

we have ∇γQ(θ(r); θ(r)) 6= 0. So, θ(r) is not a local

Q(θ(r); θ(r)). Therefore, from the definition of the M-step

update in (6), we conclude that

Q(θ(r+1); θ(r)) > Q(θ(r); θ(r)). (24)

Now, we arrive at the desired result by Lemmas 3 and 4.

Proof of Theorem 1

Let θ∗ = [γT

∗ αT

∗ ∈ H]T ∈ Θ be a limit point of the

sequence {θ(r), r ≥ 1}. From Lemma 5 and Assumption 2,

we know that there exists a subsequence {θ(rj), j ≥ 1} of

{θ(r), r ≥ 1} such that

lim
j→∞

θ(rj) = θ∗ = [γT

∗ αT

∗ ]
T. (25)

We next construct another subsequence {θ(rj+1), j ≥ 1},

which also belongs a compact set due to Assumption 2.

Hence, the new sequence contains a convergent subsequence

{θ(rjl+1), l ≥ 1} for which there exists θ̂ such that

lim
l→∞

θ(rjl+1) = θ̂. (26)

From (6), we get

θ(rjl+1) ∈ G(γ(rjl ),α(rjl )). (27)

Here, by construction, {α(rjl ), l ≥ 1} is a subsequence of the

convergent sequence {α(r), r ≥ 1}. So it converges to α∗,

and since the subsequence belongs to a finite set, there exists

L > 0 such that

θ(rjl+1) ∈ G(γ(rjl ),α∗), ∀ l > L. (28)

Therefore, by Assumption 3 and (26), we arrive at

θ̂ ∈ G

(

lim
l→∞

γ(rjl ),α∗

)

= G(γ∗,α∗), (29)

due to (25), where G(γ∗,α∗) is the next iterate of the EM

algorithm if the current iterate is θ∗. The relation (29) implies

L(θ∗) = L(θ̂) = L (G(γ∗,α∗)) , (30)

due to the convergence of the sequence {L(θ(r)), r ≥ 1} as

ensured by Lemma 5.

Furthermore, by Lemma 6, if θ∗ /∈ S∗, then, L(θ∗) >
L (G(γ∗,α∗)). Hence, (30) holds only if θ∗ ∈ S∗. Finally, by

Lemma 5, L(θ) is a constant over the subset of S∗ to which

the iterates converge, and the proof is completed.
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APPENDIX B

PROOF OF THEOREM 2

The proof verifies the four assumptions of Theorem 2 hold

for the algorithm. We need the following supporting lemmas.

Lemma 7 ( [21, Theorem 2.11]). Let S be an unbounded

subset of Rn, and f : S → R is a continuous function, then

f is said to be coercive (i.e., lim
‖s‖→∞

f(s) = ∞) if and only if

all of its level sets are compact.

Lemma 8 ( [22, Theorem 5.19, 5.20]). The determinant and

inverse of a matrix are continuous in its elements.

Lemma 9. The function L([γT αT]T) is continuous and

coercive with respect to γ.

Proof. By Lemma 8, the determinant and inverse of a matrix

are continuous in its elements. Therefore, from (15) and (17),

L([γT αT]T) is a continuous function of γ. Further, ‖γ‖
goes to ∞ if and only if at least one entry of γ goes to ∞.

As a result, from (15), we get

lim
‖γ‖→∞

yT
(

RY θ + σ2I
)−1

y = 0. (31)

This relation leads to the following,

lim
‖γ‖→∞

L([γT αT]T) = lim
‖γ‖→∞

log
∣

∣RY θ + σ2I
∣

∣ = ∞.

(32)

Hence, we conclude that L([γT αT]T) is a coercive function

of γ, and the proof is complete.

Lemma 10 ( [23, Theorem 4.2.1]). Let (X , τ) be a topological

space and the functions q1, q2, q3, . . . , qp : X → R be

continuous, for some finite p > 0. Then, the function qmax

defined as

qmax = max{q1, q2, . . . , qp} (33)

is continuous.

Proof of Theorem 2

We start with verifying the first assumption of Theorem 1.

To this end, we notice that covariance matrix RY (θ) is

positive semidefinite, and thus, we have

log
∣

∣RY (θ) + σ2I
∣

∣ ≥ log
∣

∣σ2I
∣

∣ (34)

yT
(

RY (θ) + σ2I
)−1

y > 0, (35)

for any y ∈ RKm. Therefore, (17) leads to the following:

L(θ) ≤ −
Km

2
log

(

2πσ2
)

, (36)

and Assumption 1 holds.

To verify the second assumption of Theorem 2, we note

that H is a compact set, and it is sufficient to show that γ(r)

belongs to a compact set. For this, we define

S ,

{

γ ∈ R
n : ∃ α ∈ H such that

L([γT αT]T) ≥ L(θ(0))
}

. (37)

Also, by Lemma 5, L(θ(r)) ≤ L(θ(0)), for any integer r > 0.

Therefore, γ(r) ∈ S. Consequently, it is enough to show that

S is a compact set. To this end, we rewrite S as a finite union

of level sets of L,

S =
⋃

α∈H

{

γ ∈ R
n : L([γT αT]T) ≥ L(θ(0))

}

. (38)

Since a finite union of compact sets is compact, we need to

show that the level sets of L([γT αT]T) for a fixed value

of α are compact. Invoking Lemma 7, these level sets are

compact if L([γT αT]T) is continuous and coercive with

respect to γ. Then, by Lemma 9, Assumption 2 holds.

To check the third assumption of Theorem 2, we verify if

the following holds:

lim
r→∞

G(γ(r),α∗) = G
(

lim
r→∞

γ(r),α∗

)

, (39)

when the limits exist. For this, we recall from (14) that

Gγ(γ
(r),α∗) is a singleton set and continuous in γ(r). So,

lim
r→∞

Gγ(γ
(r),α∗) = Gγ

(

lim
r→∞

γ(r),α∗

)

. (40)

We next complete the proof by establishing that the limit

limr→∞ Gα

(

γ(r),α∗

)

= Gα

(

limr→∞ γ(r),α∗

)

. For this, we

consider the sequence {Qmax

(

γ(r)
)

}∞r=1 where

Qmax(γ
(r)) = max

α∈{0,1}K
q(γ(r),α), (41)

where q(γ(r),α) = Q([γ(r)T αT]T; [γ(r)T αT

∗ ]
T) from (6).

We notice that {0, 1}K is a finite set. Also, since p(Y ,X|θ)
and p(Y ,X|θ(r)) are Gaussian, q(γ(r),α) is a continuous

function of γ(r). Then, invoking Lemma 10, we obtain that

Qmax(γ
(r)) is a continuous function of γ(r). Therefore, with

1 being the indicator function, we derive that for any α,

lim
r→∞

1

{

α ∈ Gα(γ
(r),α∗)

}

= lim
r→∞

1

{

q(γ(r),α) = Qmax(γ
(r))

}

(42)

= 1

{

q
(

lim
r→∞

γ(r),α
)

= Qmax

(

lim
r→∞

γ(r)
)}

(43)

= 1

{

α ∈ Gα

(

lim
r→∞

γ(r),α∗

)}

, (44)

where (43) uses the continuity of q and Qmax. As a result,

lim
r→∞

Gα(γ
(r),α∗)

=
{

α ∈ {0, 1}K : 1
{

α ∈ Gα

(

lim
r→∞

γ(r),α∗

)}

= 1
}

(45)

= Gα

(

lim
r→∞

γ(r),α∗

)

. (46)

Hence, Assumption 3 holds.

Finally, we verify the fourth assumption of Theorem 1. The

dependence of γ(r) and γ on Q is via distributions p(Y ,X|θ)
and p(Y ,X|θ(r)), which are Gaussian. The function is com-

puted using Kalman smoothing that involves only continuous

functions of diag{γ} and diag{γ(r)}. Thus, Assumption 4

holds, and the proof is complete.
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