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Abstract—In this letter, we investigate the tradeoff between
energy efficiency (EE) and spectral efficiency (SE) in device-to-
device (D2D) communications underlaying cellular networks with
uplink channel reuse. The resource allocation problem is modeled
as a noncooperative game, in which each user equipment (UE)
is self-interested and wants to maximize its own EE. Given the
SE requirement and maximum transmission power constraints,
a distributed energy-efficient resource allocation algorithm is
proposed by exploiting the properties of the nonlinear fractional
programming. The relationships between the EE and SE tradeoff
of the proposed algorithm and system parameters are analyzed
and verified through computer simulations.

Index Terms—EE and SE tradeoff, D2D communication, non-
cooperative game, nonlinear fractional programming.

I. Introduction

DEVICE-TO-DEVICE (D2D) communications underlay-
ing cellular networks bring numerous benefits including

the proximity gain, the reuse gain, and the hop gain [1]. How-
ever, the introduction of D2D communications into cellular
networks poses many new challenges in the resource allocation
design due to the co-channel interference caused by spectrum
reuse and limited battery life of user equipments (UEs).

A large number of works have been done in how to optimize
the spectral efficiency (SE) through resource allocation in an
interference-limited environment (see [2]–[4] and references
therein). However, most of the previous studies ignore the
energy consumption of UEs. In practical implementation, UEs
are typically handheld devices with limited battery life and can
quickly run out of battery if the energy consumption is ignored
in the system design.

A limited amount of works have considered the energy effi-
ciency (EE) optimization problem (see [5]–[7], and references
therein). Unfortunately, optimum EE and SE are not always
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achievable simultaneously and may sometimes even conflict
with each other [8]. Therefore, it is an urgent task to study
the EE and SE tradeoff in D2D communications underlaying
cellular networks, which has not been well investigated and
analyzed.

In this letter, firstly, we model the resource allocation
problem as a noncooperative game, and propose a novel
distributed energy-efficient resource allocation algorithm to
maximize each UE’s EE subject to the SE requirement and
transmission power constraints. Then, we study the EE and SE
tradeoff of the proposed algorithm, and analyze and verify the
relationships between the tradeoff and system parameters (such
as transmission power, channel gain, etc.) through computer
simulations.

II. System Model

In this paper, we consider the uplink scenario of a single
cellular network. Each cellular UE is allocated with an orthog-
onal link, and D2D pairs reuse the same channels allocated
to cellular UEs in order to improve the SE. The set of UEs
is denoted asS = {N ,K}, whereN andK denote the sets
of D2D UEs and cellular UEs respectively. The total number
of D2D links and cellular links are denoted asN and K
respectively.

The distributed resource allocation problem is modeled as
a noncooperative game. The strategy sets of thei-th D2D
transmitter and other D2D transmitters inN\{i} are denoted as
pd

i andpd
−i respectively. The strategy sets of thek-th cellular

UE and other cellular UEs inK\{k} are denoted aspc
k andpc

−k
respectively. For thei-th D2D pair, its EEUd

i,EE (bits/Hz/J)
depends not only onpd

i , but also on the strategies taken by
other UEs inS\{i}, i.e., pd

−i, p
c
k, p

c
−k, which is defined as

Ud
i,EE (pd

i , p
d
−i, p

c
k, p

c
−k) =

Ud
i,S E

pd
i,total

=

∑K
k=1 log2

(

1+
pk

i g
k
i

pk
cg

k
c,i+
∑N

j=1, j,i pk
jg

k
j,i+N0

)

∑K
k=1

1
η

pk
i + 2pcir

, (1)

whereUd
i,S E is the SE (bits/s/Hz), andpd

i,total is the total power
consumption (W).pk

i , pk
c, andpk

j are the transmission power of
thei-th D2D transmitter, thek-th cellular UE, and thej-th D2D
transmitter in thek-th channel respectively.gk

i is the channel
gain of thei-th D2D pair,gk

c,i is the interference channel gain
between thek-th cellular UE and thei-th D2D receiver, and
gk

j,i is the interference channel gain between thej-th D2D
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transmitter and thei-th D2D receiver.pk
cg

k
c,i and

∑N
j=1, j,i pk

jg
k
j,i

denote the interference from the cellular UE and the other D2D
pairs that reuse thek-th channel respectively.N0 is the noise
power. pd

i,total is composed of the transmission power over all
of theK channels, i.e.,

∑K
k=1

1
η

pk
i , and the circuit power of both

the D2D transmitter and receiver, i.e., 2pcir. The circuit power
of any UE is assumed as the same and denoted aspcir. η is
the power amplifier (PA) efficiency, i.e., 0< η < 1.

Similarly, the EE of thek-th cellular UEUc
k,EE is defined

as

Uc
k,EE (pd

i , p
d
−i, p

c
k, p

c
−k)

=
Uc

k,S E

pc
k,total

=

log2

(

1+ pk
cg

k
c

∑N
i=1 pk

i g
k
i,c+N0

)

1
η

pk
c + pcir

, (2)

where gk
c is the channel gain between thek-th cellular UE

and the base station (BS),gk
i,c is the interference channel

gain between thei-th D2D transmitter and the BS in thek-th
channel.

∑N
i=1 pk

i g
k
i,c denotes the interference from all of the

D2D pairs to the BS in thek-th channel.pc
k,total is composed

of the transmission power1
η

pk
c and the circuit power only at

the transmitter side, i.e.,pcir.
The EE maximization problem for thei-th D2D pair is

formulated as

max. Ud
i,EE (pd

i , p
d
−i, p

c
k, p

c
−k) (3)

s.t. C1 : Ud
i,S E ≥ Rd

i,min, (4)

C2 : 0≤
K
∑

k=1

pk
i ≤ pd

i,max. (5)

The corresponding EE maximization problem for thek-th
cellular UE is formulated as

max. Uc
k,EE (pd

i , p
d
−i, p

c
k, p

c
−k) (6)

s.t. C3 : Uc
k,S E ≥ Rc

k,min, (7)

C4 : 0≤ pk
c ≤ pc

k,max. (8)

The constraints C1 and C3 specify the minimum SE require-
ments. C2 and C4 are the non-negative constraints on the
power allocation variables.

III. D istributed Energy-Efficient Resource Allocation

A. The Objective Function Transformation

The objective functions defined in (3) and (6) are non-
convex, but can be transformed into concave functions by
using the nonlinear fractional programming developed in [9].
We define the maximum EE of thei-th D2D pair asqd∗

i , which
is given by

qd∗
i = max. Ud

i,EE (pd
i , p

d
−i, p

c
k, p

c
−k) =

Ud
i,S E(pd∗

i )

pd
i,total(p

d∗
i )
, (9)

where pd∗
i is the best response of thei-th D2D transmitter

given the other UEs’ strategiespd
−i, pc

k, pc
−k. The following

theorem can be proved:
Theorem 1: The maximum EEqd∗

i is achieved if and only if
max.Ud

i,S E(pd
i )−qd∗

i pd
i,total(p

d
i ) = Ud

i,S E(pd∗
i )−qd∗

i pd
i,total(p

d∗
i ) = 0.

Proof: The proof of Theorem 1 is given in Appendix A.

Theorem 1 shows that the transformed problem with an
objective function in subtractive form is equivalent to thenon-
convex problem in fractional form, i.e., they lead to the same
optimum solutionpd∗

i . Similarly, let qc∗
k and pc∗

k denote the
maximum EE and best response of thek-th cellular UE, we
have

Theorem 2: The maximum EEqc∗
k is achieved if and only if

max. Uc
k,S E(pc

k)− qc∗
k pc

k,total(p
c
k) = Uc

k,S E(pc∗
k )− qc∗

k pc
k,total(p

c∗
k ) =

0.

B. The Iterative Optimization Algorithm

The proposed algorithm is summarized in Algorithm 1.n is
the iteration index,Lmax is the maximum number of iterations,
and∆ is the maximum tolerance.Lmax is set to 10 to ensure
that the algorithm converges sufficiently although simulation
results in Section V show that the algorithm is able to converge
in only 5 iterations. This setting will not increase the compu-
tation complexity significantly because the loop will terminate
once the algorithm converges sufficiently close to the optimum
EE, i.e., when the conditionUd

i,S E(p̂d
i ) − qd

i pd
i,total(p̂

d
i ) ≤ ∆ is

satisfied.
At each iteration, for any givenqd

i or qc
k, the correspond-

ing resource allocation strategies are obtained by solving
the following equivalent transformed optimization problems
respectively:

max. Ud
i,S E(pd

i ) − qd
i pd

i,total(p
d
i )

s.t. C1,C2. (10)

max. Uc
k,S E(pc

k) − qc
k pc

k,total(p
c
k)

s.t. C3,C4. (11)

Taking the i-th D2D pair as an example, the Lagrangian
associated with the problem (10) is given by

LEE (pd
i , αi, βi) = Ud

i,S E(pd
i ) − qd

i pd
i,total(p

d
i )

+ αi

(

Ud
i,S E(pd

i ) − Rd
i,min

)

− βi















K
∑

k=1

pk
i − pd

i,max















, (12)

whereαi, βi are the Lagrange multipliers associated with the
constraints C1 and C2 respectively. Since the problem (10) is
in a standard concave form with differentiable objective and
constraint functions, the Karush-Kuhn-Tucker (KKT) condi-
tions are used to find the optimum solutions and the duality
gap is zero (see page 244 in [10]). Another way to prove that
the strong duality holds is to prove that the Slater’s condition
is satisfied. Definef0(pd

i ) = −Ud
i,S E(pd

i )+qd
i pd

i,total(p
d
i ), f1(pd

i ) =
Rd

i,min−Ud
i,S E(pd

i ), f2(pd
i ) = −

∑K
k=1 pk

i , f3(pd
i ) =
∑K

k=1 pk
i −pd

i,max,
then the EE maximization problem can be written as

min . f0(pd
i ) (13)

s.t. f1(pd
i ) ≤ 0 (14)

f2(pd
i ) ≤ 0 (15)

f3(pd
i ) ≤ 0 (16)
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Let us definerelint D as the relative interior of the feasible
domain, andD = ∩3

m=1dom(fm). We note thatf0 and f1 are
convex functions, andf2 and f3 are affine functions. Ifrelint
D is not empty, there always exists anpd

i ∈ relint D such that
f1(pd

i ) < 0, which satisfies the Slater’s condition and ensures
that the strong duality holds. On the other hand, ifrelint D
is empty, the optimization problem is either infeasible or has
only one solution, which is not the interest of this paper.

Alternatively, we can replaceRd
i,min by Rd

i,min+ limξ→0+ ξ (ξ >
0) in the constraint C1 so thatUd

i,S E(pd
i ) ≥ Rd

i,min + limξ→0+ ξ.
This always ensures that

f1 = Rd
i,min − Ud

i,S E(pd
i ) ≤ Rd

i,min − Rd
i,min − lim

ξ→0+
ξ = − lim

ξ→0+
ξ < 0.

(17)

This modification of C2 will not affect the stability of the
algorithm since the proposed iterative optimization algorithm
converges to the optimum EE, which is proved in Theorem 4.

The equivalent dual problem can be decomposed into two
subproblems, which is given by

min
(αi ≥ 0, βi ≥ 0)

. max
(pd

i )
. LEE (pd

i , αi, βi) (18)

Taking the first-order derivatives of (12) with regard topk
i , we

have

∂LEE (pd
i , αi, βi)

∂pk
i

∣

∣

∣

∣

pk
i =p̂k

i

= 0, k = 1, · · · ,K (19)

For any givenqd
i , the optimum solution is given by

p̂k
i =

















η(1+ αi) log2 e

qd
i + ηβi

−
p̂k

cg
k
c,i +
∑N

j=1, j,i p̂k
jg

k
j,i + N0

gk
i

















+

, (20)

where [x]+ = max{0, x}. Equation (20) indicates a water-
filling algorithm for transmission power allocation, and the
interference from the other UEs decreases the water level.

For solving the minimization problem, the Lagrange multi-
pliers can be updated by using the gradient method [11], [12].
The gradient ofαi andβi are given by

∂LEE (pd
i , αi, βi)

∂αi
= Ud

i,S E(pd
i ) − Rd

i,min,

∂LEE (pd
i , αi, βi)

∂βi
= −















K
∑

k=1

pk
i − pd

i,max















. (21)

Then,αi, βi are updated by using the gradient method as

αi(τ + 1) =
[

αi(τ) − µi,α(τ)
(

Ud
i,S E(p̂d

i ) − Rd
i,min

)]+
, (22)

βi(τ + 1) =















βi(τ) + µi,β(τ)















K
∑

k=1

p̂k
i − pd

i,max





























+

, (23)

where τ ≥ 0 is the iteration index,µi,α(τ), µi,β(τ) are the
positive step sizes which are taken in the direction of the
negative gradient for the dual variables at iterationτ. The step
sizes should be chosen to strike a balance between optimality
and convergence speed. Since the Lagrange multiplier updat-
ing techniques are beyond the scope of this paper, interested
readers may refer to [11], [12] and references therein for
details.

Similarly, for any givenqc
k, the optimum solution ofk-th

cellular UE is given by

p̂k
c =















η(1+ δk) log2 e

qc
k + ηθk

−

∑N
i=1 p̂k

i g
k
i,c + N0

gk
c















+

, (24)

whereδk, θk are the Lagrange multipliers associated with the
constraints C3 and C4 respectively.

C. Complexity Analysis

The proposed iterative optimization algorithm is based on
the nonlinear fractional programming developed in [9]. Theit-
erative algorithm solves the convex problem of (10) (or (11)at
each iteration. The iterative algorithm produces an increasing
sequence ofqd

i (or qc
k) values which are proved to converge

to the optimum EEqd∗
i at a superlinear convergence rate [13].

Taking the i-th D2D pair as an example, in each iteration,
(10) is solved by using the Lagrange dual decomposition. The
algorithmic complexity of this method is dominated by the
calculations given by (20), which leads to a total complexity
O(Id

i,dualI
d
i,loopK) when K is large, whereId

i,dual is the required
number of iterations required for reaching convergence, i.e.,
Ii,dual ≤ Lmax, and Id

i,loop is the required number of iterations
for solving the dual problem.

In particular, the dual problem (18) is decomposed into two
subproblems: the inner maximization problem solves the the
power allocation problem to find the best strategy and the
outer minimization problem solves the master dual problem to
find the corresponding Lagrange multipliers. In the inner max-
imization problem, a total ofId

i,dualI
d
i,loopK(N+3) real additions,

Id
i,dualI

d
i,loopK(N + 5) real multiplications, andId

i,dualI
d
i,loopK real

comparisons are required. In the outer minimization problems,
a total of Id

i,dualI
d
i,loop(K + 3) real additions, 2Id

i,dualI
d
i,loop real

multiplications, and 2Id
i,dualI

d
i,loop real comparisons are quired.

In conclusion, a total ofId
i,dualI

d
i,loop(KN + 4K + 3) real ad-

ditions, Id
i,dualI

d
i,loop(KN + 5K + 2) real multiplications, and

Id
i,dualI

d
i,loop(K+2) real comparisons are quired for thei-th D2D

pair.

D. Distributed Implementation

In the formulated EE maximization problem, the best re-
sponse of thei-th D2D transmitterpd

i depends on the strategies
of all other UEs, i.e.,pd

−i, p
c
k, p

c
−k. In order to obtain this knowl-

edge, each UE has to broadcast its transmission strategy to
other UEs. However, we observe that the sufficient information
of pd

−i, p
c
k, p

c
−k are contained in the form of interference, i.e.,

pk
cg

k
c,i and

∑N
j=1, j,i pk

jg
k
j,i. In this way, each D2D pair has only to

estimate the interference on all available channels to determine
the power optimization rather than knowing the specific strate-
gies of other UEs. For thek-th cellular UE, the BS estimates
the interference from D2D pairs on thek-th channel and then
feeds back this information to the cellular UE. If UEs update
their strategies sequentially, player strategies will eventually
converge to a Nash equilibrium, which is proved to exist in
Theorem 3. The D2D peer discovery techniques and the design
of strategy updating mechanism are out of the scope of this
paper and will be discussed in future works.
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Algorithm 1 Iterative Resource Allocation Algorithm

1: qd
i ← 0, qc

k ← 0, Lmax ← 10, n← 1, ∆← 10−3

2: for n = 1 to Lmax do
3: if D2D link then
4: solve (10) for a givenqd

i and obtainp̂d
i

5: if Ud
i,S E(p̂d

i ) − qd
i pd

i,total(p̂
d
i ) ≤ ∆, then

6: pd∗
i = p̂d

i , andqd∗
i =

Ud
i,S E(pd∗

i )

pd
i,total(p

d∗
i )

7: break
8: else

9: qd
i =

Ud
i,S E(p̂d

i )

pd
i,total(p̂

d
i )

, andn = n + 1

10: end if
11: else
12: solve (11) for a givenqc

k and obtainp̂c
k

13: if Uc
k,S E(p̂c

k) − qc
k pc

k,total(p̂
c
k) ≤ ∆, then

14: pc∗
k = p̂c, andqc∗

k =
Uc

k,S E(pc∗
k )

pc
k,total(p

c∗
k )

15: break
16: else

17: qc
k =

Uc
k,S E(p̂c

k)

pc
k,total(p̂

c
k)

, andn = n + 1

18: end if
19: end if
20: end for

IV. Energy Efficiency and Spectral Efficiency Tradeoff

For thei-th D2D pair, by analyzing the EE and SE relation-
ships, we have the following properties.

Lemma 1: The SE,Ud
i,S E , increases monotonically aspk

i
increases, while the EE,Ud

i,EE , increases firstly and then
decreases aspk

i increases.Ud
i,EE is quasiconcave.

Proof: The proof of Lemma 1 is given in Appendix B.

Lemma 2: The transformed objective function in subtractive
form is a concave function.

Proof: The proof of Lemma 2 is given in Appendix C.

Lemma 3: max(pd
i ) Ud

i,S E(pd
i )−qd

i pd
i,total(p

d
i ) is monotonically

decreasing asqd
i increases.

Proof: The proof of Lemma 3 is given in Appendix D.

Lemma 4: For any feasible pd
i , max(

pd
i

)Ud
i,S E

(

pd
i

)

−

qd
i pd

i,total(p
d
i ) ≥ 0.

Proof: The proof of Lemma 4 is given in Appendix E.

Theorem 3: A Nash equilibrium exists and the optimum
strategy set{pd∗

i , p
c∗
k | i ∈ N , k ∈ K} obtained by using

Algorithm 1 is the Nash equilibrium.
Proof: The proof of Theorem 3 is given in Appendix F.

Theorem 4: The proposed iterative optimization algorithm
converges to the optimum EE.

Proof: The proof of Theorem 4 is given in Appendix G.

Corollary 1: EE can be increased by a maximum of
∆EE = qd∗

i − Ud
i,EE (pd

i ) by either trading off SE with ∆S E =
Ud

i,S E(pd
i ) − Ud

i,S E(pd∗
i ) if and only if pk

i > pk∗
i , ∀pk∗

i ∈ pd∗
i ,

or by simultaneously increasing SE with∆S E = Ud
i,S E(pd∗

i ) −
Ud

i,S E(pd
i ) if and only if pk

i < pk∗
i , ∀pk∗

i ∈ pd∗
i .

Proof: Corollary 1 can be easily proved by Lemma 1
since thatUd

i,EE decreases aspk
i increases whenpk

i > pk∗
i , and

bothUd
i,EE andUd

i,S E increases aspk
i increases whenpk

i < pk∗
i .

The EE and SE tradeoffs depend on the specific channel re-
alization in each simulation and a large number of simulations
are required to obtain the average result. In order to facilitate
analysis and get some insights, we consider a special case that
all the signal channels have the same power gaing, and all
the interference channels have the same power gain ˆg. The
network coupling factor is defined asI = ĝ/g [14]. Assuming
that N0 can be ignored comparing to the interference,Ud

i,S E
andUd

i,EE are given by

Ud
i,S E ≈ K log2

(

1+
pk

i

pk
cI + (N − 1)pk

i I

)

, (25)

Ud
i,EE ≈

ηUd
i,S E

(

1− (N − 1)I(2
Ud

i,S E
K − 1)

)

K pk
cI(2

Ud
i,S E
K − 1)+ 2pcirη

(

1− (N − 1)I(2
Ud

i,S E
K − 1)

)

.

(26)

Similarly, Uc
k,S E andUd

i,EE are given by

Uc
k,S E ≈ log2

(

1+
pk

c

N pk
i I

)

, (27)

Uc
k,EE ≈

ηUc
k,S E

N pk
i I(2U

k,S E − 1)+ pcirη
. (28)

Corollary 2: For any given pk
i and pk

c, both Ud
i,S E and

Ud
i,EE decrease monotonically asI increases. For any finite

and positiveI, Ud
i,EE increases firstly and then decreases as

Ud
i,S E increases.Ud

i,EE → 0 if and only if Ud
i,S E → 0 or

Ud
i,S E → K log2

(

1+ 1
(N−1)I

)

.
Proof: The proof of Corollary 2 is given in Appendix H.

Corollary 3: For any given pk
i and pk

c, both Uc
k,S E and

Uc
k,EE decrease monotonically asI increases. For any finite and

positive I, Uc
k,EE increases firstly and then decreases asUc

k,S E
increases.Uc

k,EE → 0 if and only if Uc
k,S E → 0 or Uc

k,S E → ∞.
Similar conclusions hold for cellular links but are omitted

here due to space limitation.

V. Simulation Results

In this section, the EE and SE tradeoff is investigated
through computer simulations. There are a total ofN = 5
D2D links and K = 3 cellular links. For each simulation,
the locations of cellular UEs and D2D UEs are generated
randomly within a cell with a radius of 500 m. The maximum
D2D transmission distance is 25 m. The values of simulation
parameters and channel gains are inspired by [2], [4], [5]. Fig.
1 shows the locations of D2D UEs and cellular UEs generated
in one simulation. The maximum distance between any two
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Fig. 1. The locations of D2D UEs and cellular UEs generated inone
simulation (N = 5, K = 3, the cell radius is 500 m, and maximum D2D
distance is 25 m ).

D2D UEs that form a D2D pair is 25 m. The channel gain
between the transmitteri and the receiverj is calculated as
d−2

i, j |hi, j|
2 [2], [5], [15], wheredi, j is the distance between the

transmitteri and the receiverj, hi, j is the complex Gaussian
channel coefficient that satisfieshi, j ∼ CN(0, 1).

Fig. 2 shows the normalized average EE of D2D links
corresponding to the number of game iterations. We compare
the proposed EE maximization algorithm (labeled as “energy-
efficient”) with the SE maximization algorithm (labeled as
“spectral-efficient” ), and the random power allocation al-
gorithm (labeled as “random”). In the spectral-efficient al-
gorithm, each UE is self-interested and wants to maximize
its own SE rather than EE, and the power consumption is
completely ignored in the optimization process. The results are
averaged through a total number of 1000 simulations and nor-
malized by the maximum value. The normalized average EE
of the proposed energy-efficient algorithm converge to 0.429,
while the random algorithm converge to 0.124 and the spectral-
efficient algorithm converge to 0.064. It is clear that the pro-
posed energy-efficient algorithm significantly outperforms the
spectral-efficient algorithm and the random algorithm in terms
of EE in an interference-limited environment. The spectral-
efficient algorithm has the worst EE performance among the
three because power consumption is completely ignored in the
optimization process. The random algorithm fluctuates around
the equilibrium since that the transmission power strategyis
randomly selected.

Fig. 3 shows the EE and SE tradeoffs for D2D links
corresponding topd

i,max = ∞, 200 mW respectively. For each
D2D link, the SE requirement is increased from 0 to 16
bits/s/Hz with a step of 1, and the corresponding EE is
obtained by Algorithm 1. The average EE ofN D2D links is
averaged again over a total number of 500 simulations. For
any specified SE requirement (0≤ Ud

i,EE ≤ 16 bits/s/Hz),
there is always a possibility to satisfy the SE requirement
if the signal channel gain is large enough compared to the
interference channel gain. One simple example is that thei-
th D2D transmitter and receiver are close to each other but
far from the other interference sources. Simulation results
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Fig. 2. The normalized average energy efficiency of D2D links corresponding
to the number of game iterations (N = 5, K = 3, pd

i,max = pc
k,max = 200 mW,

Rc
k,min = 0.1 bit/s/Hz, Rd

i,min = 1 bit/s/Hz, 1000 simulations).

show that the maximum achievable EE is limited bypd
i,max

(constraint C2), which is particularly obvious in the high SE
regime. If the circuit power consumptionpcir is taken into
consideration, as proved in Lemma 1, the EE,Ud

i,EE , increases
firstly and then decreases aspk

i increases. Since the SE,Ud
i,S E ,

increases monotonically aspk
i increases, we can prove that

the EE, Ud
i,EE , increases firstly and then decreases asUd

i,S E
increases, which is in agreement with Fig. 3. It is clear that
the EE gain achieved by decreasing the transmission power
below the power for optimum EE is not able to compensate
for the EE loss caused by the circuit power and SE loss.

Fig. 4 shows the tradeoff between EE and SE for D2D
links in the special case discussed in Section IV. Cellular
UEs are assumed to transmit withpk

c = pc
k,max = 200 mW.

For each SE, the corresponding EE is obtained by (26).
Simulation results show that the maximum achievable SE
and EE decrease monotonically asI increases, which agrees
with Corollary 2. In Fig. 4, it is impossible to achieve the
corresponding EE for someUd

i,EE . The reason is that we
consider the special case introduced in Section IV that all
the signal channels have the same power gaing, and all
the interference channels have the same power gain ˆg. In
this special case, the channel gains are fixed and no longer
depend on the transmission distance. WhenI = −15 dB,
pk

c = pc
k,max = 200 mW, N = 5,K = 3, pd

i,max = 200 mW, the
maximum achievableUd

i,S E calculated by (25) is only 8.6182
bits/s/Hz. Therefore, the solution is infeasible whenUd

i,S E ≥ 9
bits/s/Hz. Both Fig. 3 and Fig. 4 demonstrate that increasing
transmission power beyond the power for optimum EE brings
little SE improvement but significant EE loss. However, in
the case ofI = −10dB, the EE loss is not so obvious since
that the maximum achievable EE is severely limited by the
interference.

Fig. 5 shows the EE and SE tradeoffs for cellular links
corresponding topd

i,max = ∞, 200 mW respectively. The SE
requirement is increased from 0 to 10 bits/s/Hz with a step
of 0.5, and the corresponding EE is obtained by Algorithm 1.
The average EE ofK cellular links is averaged again over a
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200 mW,η = 0.35, pcir = 100 mW).
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Fig. 4. The energy efficiency and spectral efficiency tradeoff for D2D links
corresponding to three interference levelsI = −20,−15,−10 dB, (g = 1, N =
5, K = 3, pd

i,max = pc
k,max = 200 mW,η = 0.35, pcir = 100 mW).

total number of 500 simulations. Compared with Fig. 3, the
maximum EE is much lower due to the low signal channel gain
caused by longer transmission distance in cellular links. In
addition, the maximum achievable EE is significantly limited
by pc

k,max in low and high SE regimes also due to the long
transmission distance.

Fig. 6 shows the tradeoff between EE and SE for cellular
links in the special case discussed in Section IV. D2D UEs

are assumed to transmit withpk
i =

pd
i,max

K = 200
3 mW. For each

SE, the corresponding EE is obtained by (28). Simulation
results show that the maximum achievable SE and EE decrease
monotonically asI increases, which agrees with Corollary 3.
Compared with Fig. 4, both of the maximum EE and SE are
limited due to that a cellular link can only use one channel,
while a D2D pair usesK channels.
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Fig. 5. The energy efficiency and spectral efficiency tradeoff for cellular
links corresponding topd

i,max = ∞, 200 mW, (N = 5, K = 3, N0 = 10−7 W,
pd

i,max = 200 mW,η = 0.35, pcir = 100 mW).
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Fig. 6. The energy efficiency and spectral efficiency tradeoff for cellular
links corresponding to three interference levelsI = −20,−15,−10 dB, (g =
1, N = 5, K = 3, pd

i,max = pc
k,max = 200 mW,η = 0.35, pcir = 100 mW).

VI. Conclusion

In this paper, we proposed a distributed energy-efficient
resource allocation algorithm for D2D communications by
exploiting the properties of nonlinear fractional programming.
We have analyzed and verified the EE and SE tradeoff of the
proposed algorithm through computer simulations. Simulation
results demonstrate that increasing transmission power beyond
the power for optimum EE brings little SE improvement but
significant EE loss. Therefore, the proposed energy-efficient
algorithm can bring significant EE improvement subject to
little SE loss.

Appendix A
Proof of the Theorem 1

The proof of the Theorem 1 is similar to the proof of the
Theorem (page 494 in [9]). Firstly, we prove the necessity
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proof. For any feasible strategy setpd
i , ∀i ∈ N, we have

qd∗
i =

rd
i (pd∗

i )

pd
i,total(p

d∗
i )
≥

rd
i (pd

i )

pd
i,total(p

d
i )
. (29)

By rearranging (29), we obtain

rd
i (pd∗

i ) − qd∗
i pd

i,total(p
d∗
i ) = 0, (30)

rd
i (pd

i ) − qd∗
i pd

i,total(p
d
i ) ≤ 0. (31)

Hence, the maximum value ofrd
i (pd

i )− qd∗
i pd

i,total(p
d
i ) is 0, and

can only be achieved bypd∗
i , which is obtained by solving the

EE maximization problem defined in (3). This completes the
necessity proof.

Now we turn to the sufficiency proof. Assume that̃pd
i is the

optimum solution which satisfies that

rd
i (pd

i ) − qd∗
i pd

i,total(p
d
i ) ≤ rd

i (p̃d
i ) − qd∗

i pd
i,total(p̃

d
i ) = 0. (32)

By rearranging (32), we have

qd∗
i =

rd
i (p̃d

i )

pd
i,total(p̃

d
i )
≥

rd
i (pd

i )

pd
i,total(p

d
i )
. (33)

Hence,p̃d
i is also the solution of the EE maximization problem

defined in (3), i.e.,̃pd
i = pd∗

i . This completes the sufficiency
proof.

Appendix B
Proof of the Lemma 1

It is easily verified that
∂Ud

i,S E

∂pk
i
=

gk
i log2 e

pk
cg

k
c,i+
∑N

j=1, j,i pk
jg

k
j,i+N0+pk

i g
k
i
> 0.

Hence,Ud
i,S E increases monotonically withpk

i .

The denominator of
∂Ud

i,EE

∂pk
i

is a positive value, so we only
have to consider the numerator, which is defined as

f (pk
i ) =

gk
i

(∑K
k=1

1
η

pk
i + 2pcir

)

log2 e

pk
cg

k
c,i +
∑N

j=1, j,i pk
jg

k
j,i + N0 + pk

i g
k
i

−
1
η

K
∑

k=1

log2

















1+
pk

i g
k
i

pk
cg

k
c,i +
∑N

j=1, j,i pk
jg

k
j,i + N0

















(34)

Take the first-order derivative off (pk
i ), it can be verified

that
∂ f (pk

i )

∂pk
i
< 0, thus we havef (∞) < f (pk

i ) < f (0). As

lim pk
i→∞

f (pk
i ) =

1
η

log2 e − ∞ < 0, and limpk
i→0 f (pk

i ) =
2gk

i pcir log2 e

pk
cg

k
c,i+
∑N

j=1, j,i pk
jg

k
j,i+N0

> 0, we have
∂Ud

i,EE

∂pk
i
> 0 when pk

i < pk∗
i ,

and
∂Ud

i,EE

∂pk
i
< 0 when pk

i > pk∗
i . Thus, we prove thatUd

i,EE

increases firstly and then decreases aspk
i increases.

Since the numerator and denominator of (1) are concave
function and affine function ofpk

i respectively,Ud
i,EE is quasi-

concave (Problem 4.7 in [10]).

Appendix C
Proof of the Lemma 2

Taking Ud
i,S E(pd

i ) − qd
i pd

i,total(p
d
i ) as an example, which is

the transformed objective function in subtractive form corre-
sponding to thei-th D2D pair. The first partUd

i,S E(pd
i ) can be

rewritten as

Ud
i,S E(pd

i ) =
K
∑

k=1

log2

















1+
pk

i g
k
i

pk
cg

k
c,i +
∑N

j=1, j,i pk
jg

k
j,i + N0

















, (35)

which is the sum ofK concave functions. The second part
−qd

i pd
i,total(p

d
i ) is given by

−qd
i pd

i,total(p
d
i ) = −qd

i















K
∑

k=1

1
η

pk
i + 2pcir















, (36)

which is the sum ofK affine functions. Since the sum of a
concave function and an affine function is also concave, this
completes the proof of Lemma 2.

Appendix D
Proof of the Lemma 3

Defineqd∗
i < qd∗′

i , and definepd∗
i andpd∗′

i as the correspond-
ing optimum solutions respectively. We have

max
(pd

i )
Ud

i,S E(pd
i ) − qd∗

i pd
i,total(p

d
i ) = Ud

i,S E(pd∗
i ) − qd∗

i pd
i,total(p

d∗
i )

> Ud
i,S E(pd∗′

i ) − qd∗
i pd

i,total(p
d∗′
i ) > Ud

i,S E(pd∗′
i ) − qd∗′

i pd
i,total(p

d∗′
i )

= max
(pd

i )
Ud

i,S E(pd
i ) − qd∗′

i pd
i,total(p

d
i ). (37)

Appendix E
Proof of the Lemma 4

Define an feasible solution̂pd
i such thatqd

i =
Ud

i,S E (p̂d
i )

pd
i,total(p̂

d
i )

, we

have

max
(

pd
i

)

Ud
i,S E

(

pd
i

)

− qd
i pd

i,total(p
d
i ) ≥ Ud

i,S E

(

p̂d
i

)

− qd
i pd

i,total(p̂
d
i ) = 0.

(38)

Appendix F
Proof of the Theorem 3

According to [16], a Nash equilibrium exists if the utility
function is continuous and quasiconcave, and the set of strate-
gies is a nonempty compact convex subset of a Euclidean
space. Taking the EE objection function defined in (1) as an
example, the numeratorUd

i,S E is a concave function ofpk
i ,

∀i ∈ N , k ∈ K . The denominatorpd
i,total is an affine function of

pk
i . Therefore,Ud

i,EE is quasiconcave (Problem 4.7 in [10]). The
set of the strategiespd

i = {p
k
i | 0 ≤

∑K
k=1 pk

i ≤ pd
i,max, k ∈ K},

∀i ∈ N, is a nonempty compact convex subset of the Eu-
clidean spaceRK . Similarly, it is easily proved that the above
conditions also hold for the cellular UE. Therefore, a Nash
equilibrium exists in the noncooperaive game.

If the strategy setpd∗
i obtained by using Algorithm 1 is not

the Nash equilibrium, thei-th D2D transmitter can choose the
Nash equilibrium̂pd

i (p̂d
i , pd∗

i ) to obtain the maximum EEqd∗
i .

However, by Theorem 1,qd∗
i can only be achieved by choosing

pd∗
i . Then, we must havêpd

i = pd∗
i , which contradicts with the

assumption. Therefore,pd∗
i is part of the Nash equilibrium. A

similar proof holds forpc∗
k . It is proved that the set{pd∗

i , p
c∗
k |

i ∈ N , k ∈ K} obtained by using Algorithm 1 is the Nash
equilibrium.
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Appendix G
Proof of the Theorem 4

Firstly, we prove that the EE for thei-th D2D pair qd
i

increases in each iteration. We denote thatp̂d
i (n) as the

optimum resource allocation policies in then-th iteration, and
qd∗

i as the optimum EE. We denote thatqd
i (n) andqd

i (n+1) as
the EE in then-th iteration and (n+1)-th iteration respectively,
and we assume thatqd

i (n) , qd∗
i , andqd

i (n+1), qd∗
i . qd

i (n+1)
is updated in then-th iteration in the proposed Algorithm 1

asqn+1 =
Ud

i,S E

(

p̂d
i (n)
)

pd
i,total

(

p̂d
i (n)
) . We have

max
(

pd
i (n)
)

Ud
i,S E

(

pd
i (n)
)

− qd
i (n)pd

i,total(p
d
i (n))

= Ud
i,S E

(

p̂d
i (n)
)

− qd
i (n)pd

i,total

(

p̂d
i (n)
)

= qd
i (n + 1)pd

i,total

(

p̂d
i (n)
)

− qd
i (n)pd

i,total

(

p̂d
i (n)
)

= pd
i,total

(

p̂d
i (n)
)(

qd
i (n + 1)− qd

i (n)
) Theorem1,Lemma3,lemma4

> 0

pd
i,total

(

p̂d
i (n)
)

>0
=⇒ qd

i (n + 1) > qd
i (n) (39)

Secondly, by combiningqd
i (n + 1) > qd

i (n), Lemma 3, and
Lemma 4, we can prove that

max
(

pd
i

)

Ud
i,S E

(

pd
i

)

− qd
i (n)pd

i,total(p
d
i )

> max
(

pd
i

)

Ud
i,S E

(

pd
i

)

− qd
i (n + 1)pd

i,total(p
d
i )

> max
(

pd
i

)

Ud
i,S E

(

pd
i

)

− qd∗
i pd

i,total(p
d
i )

= Ud
i,S E

(

pd∗
i

)

− qd∗
i pd

i,total(p
d∗
i ) = 0. (40)

Therefore,qd
i (n) is increased in each iteration and will even-

tually approachesqd∗
i as long asLmax is large enough, and

max(
pd

i

)Ud
i,S E

(

pd
i

)

−qd
i pd

i,total(p
d
i ) will approach zero and satisfy

the optimality conditions proved in Theorem 1.

Appendix H
Proof of the Corollary 2

Since
∂Ud

i,S E

∂I = −
kpk

i log2 e
(

pk
c+(N−1)pk

i

)

I2+pk
i I
< 0, and

∂Ud
i,EE

∂I =

−
kηpk

i log2 e
(

(

pk
c+(N−1)pk

i

)

I2+pk
i I

)

(kpk
i +2pcirη)

< 0, both Ud
i,S E and Ud

i,EE de-

creases monotonically asI increases. The second part is
proved by setting the numerator of (26) to 0 and solving the
correspondingUd

i,S E .
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