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Abstract—A dual-layer multiple-input multiple-output
(MIMO) system with multi-level modulation is considered. A
computationally efficient soft-input soft-output receiver based
on the exact max-log maximum a posteriori (max-log-MAP)
principle is presented in the context of iterative detection and
decoding. We show that the computational complexity of our
exact max-log-MAP solution grows linearly with the constellation
size and is also less than that of the best known methods of
Turbo-LORD that only provide approximate solutions. Using
decoder feedback to change the decision thresholds of the
constellation symbols, we show that the exhaustive search
operation boils down to a simple slicing operation.

I. I NTRODUCTION

Iterative detection and decoding (IDD) techniques have been
widely used [1]–[4] to improve the performance of multiple-
input multiple-output (MIMO) systems. The detector utilizes
the feedback from the decoder to enhance the accuracy of
its output statistics. In [1], [2], the detector was designed
as a linear minimum mean square error equalizer, accepting
soft input from the channel decoder. The soft input was used
to cancel the interference from other streams and to adapt
the equalization (weight) vector by modifying the varianceof
the canceled streams. In [3], the detector was designed as a
decision feedback equalizer with successive cancellationat the
symbol level before passing the log-likelihood ratios (LLRs) of
the code bits to the decoder. In [4], IDD was used to mitigate
the effect of inter-cell interference in orthogonal frequency di-
vision multiplexing (OFDM) systems. In [5]–[7], a maximum
a posteriori (MAP) approximating algorithm was proposed as
an improvement over the layered orthogonal lattice detector
(LORD) approach [8], [9]. In [10], list detectors were proposed
in addition to iterative channel estimation in OFDM systems.
Other MAP approximation algorithms were proposed in [11]–
[14] where modified sphere detection techniques were used.

Dual-layer transmission schemes are widely used in current
cellular systems where user equipments cannot easily support
more than two antennas. The solution presented in this paper
is an exact solution of the max-log MAP detector for dual-
layer systems and uses fewer metric computations than the
approximate solution provided in [5], [6]. To generate the
LLRs for one layer, we use the a-priori LLRs generated by
the turbo decoder for the other layer to modify its decision
thresholds and then use the slicer as a simple search device.

The rest of the paper is organized as follows. The system
model is described in Section II, and the exact max-log MAP
solution is derived in Section III. In Section IV, we prove
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that the a-priori probabilities can lead to constellation sym-
bols with empty decision regions. In Section V, we provide
the complete algorithm and describe it in pseudo code. We
analyze the algorithm computational complexity and compare
its complexity with other algorithms in Section VI, and the
paper is concluded in Section VII.

Notations: Unless otherwise stated, lower case and upper
case bold letters denote vectors and matrices, respectively, and
Im denotes the identity matrix of sizem. Furthermore,| | and
‖ ‖ denote the absolute value and thel2-norm, respectively,
while ( )H denotes the complex conjugate transpose operation.

II. SYSTEM MODEL

We consider dual-layer transmission schemes, where two
layers (streams) are transmitted overNt ≥ 2 antennas using
the precoding matrixW of sizeNt × 2. The receiver detects
the transmitted streams usingNr ≥ 2 receive antennas. The
input-output relation is given by

y = H̄Ws+ n , Hs+ n = h1s1 + h2s2 + n (1)

where y, s, n and H̄ denote theNr × 1 received signal,
2×1 transmitted symbols,Nr×1 background noise plus inter-
cell interference, andNr × Nt channel matrix, respectively.
Furthermore,hi is the i-th column vector of the equivalent
channel matrixH = H̄W, and si is the i-th transmitted
symbol chosen from theM -QAM constellationχ. The i-th
M -QAM symbol, si, representsq = log2(M) code bits
ci =

[

ci1 ci2 . . . ciq
]

. The above model suits single-
carrier systems over flat fading channels and OFDM systems
over frequency-selective channels where the relation in (1)
applies to every subcarrier. In IDD, the detector computes
the LLRs of the code bits and passes them to the channel
decoder, which computes the extrinsic LLRs and feeds them
back to the detector. The detector uses the a priori LLRs
computed by the decoder to generate more accurate LLRs for
the channel decoder and so forth. Assuming known channel
and zero-mean circularly symmetric complex Gaussian noise
n of covariance matrixCnn = Q−1, we write the log MAP
a posteriori detector LLR of the bitc1k as follows:

L(c1k) = log








∑

s̄1∈χk,1

Ps̄1
∑

s̄2∈χ
exp

(

−‖y − h1s1 − h2s2‖2Q
)

Ps̄2

∑

s̄1∈χk,0

Ps̄1
∑

s̄2∈χ
exp

(

−‖y − h1s1 − h2s2‖2Q
)

Ps̄2









(2)

where‖x‖2Q ≡ xHQx, χk,1 andχk,1 denote the constellation
sets where thek-th bit are ’1’ and ’0’, respectively, andPs̄1
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and Ps̄2 denote the a priori probabilities thats1 = s̄1 and
s2 = s̄2, respectively. The max-log MAP approximation of
the LLR of c1k is given by:

L(c1k)

= max
s̄1∈χk,1

(

logPs̄1+max
s̄2∈χ

(

logPs̄2−‖y−h1s̄1−h2s̄2‖2Q
)

)

− max
s̄1∈χk,0

(

logPs̄1+max
s̄2∈χ

(

logPs̄2−‖y−h1s̄1−h2s̄2‖2Q
)

)

(3)

Similarly, the max-log MAP LLR ofc2k is:

L(c2k)

= max
s̄2∈χk,1

(

logPs̄2+max
s̄1∈χ

(

logPs̄1−‖y−h1s̄1−h2s̄2‖2Q
)

)

− max
s̄2∈χk,0

(

logPs̄2+max
s̄1∈χ

(

logPs̄1−‖y−h1s̄1−h2s̄2‖2Q
)

)

(4)

The brute force solution of (3) (and similarly (4)) requiresthe
computation ofM2 metrics where, for each instance ofs̄1,
the metric

(

logPs̄2−‖y− h1s̄1 − h2s̄2‖2Q
)

is computed for all
instances ofs̄2. However, we show in Section III how we
obtain theexact max-log MAP solution for the LLRs using
fewer than4M (rather thanM2) metrics computations.

III. E XACT MAX -LOG MAP SOLUTION

The main strategy of our solution is to convert thel2-norms
in (3) and (4) into simple absolute values fitted for the slicing
operations. Then, we exploit the a-priori LLRs to control the
the thresholds of the slicers. We begin by whitening the noise
to getỹ=

√
Qy andh̃i=

√
Qhi. We then rewrite the bottleneck

maximization problemmax
s̄2∈χ

(

logPs̄2−‖y− h1s̄1 − h2s̄2‖2Q
)

as follows:

max
s̄2∈χ

(

logPs̄2 − ‖ỹ− h̃1s̄1 − h̃2s̄2‖2
)

=max
s̄2∈χ






logPs̄2 − ‖h̃2‖2

∥

∥

∥

∥

∥

∥

(

ỹ − h̃1s̄1

)

‖h̃2‖
−B

[

s̄2
0

]

∥

∥

∥

∥

∥

∥

2





(5)

where0 is all-zero vector of lengthNr − 1, B =
[

h̃2

‖h̃2‖
E
]

is an Nr × Nr unitary matrix asE is an Nr × (Nr − 1)
matrix chosen such thatEH h̃2 = 0 andEHE = I. The reason
we write the matrixB in this form is to exploit its unitary
structure and take it as a common factor out of the norm
without affecting its value. This will lead to converting the l2-
norm into a single absolute value as follows. SinceBHB = I2,
we rewrite the maximization as follows:

max
s̄2∈χ






logPs̄2 − ‖h̃2‖2

∥

∥

∥

∥

∥

∥

BH
(

ỹ − h̃1s̄1

)

‖h̃2‖
−
[

s̄2
0

]

∥

∥

∥

∥

∥

∥

2






=max
s̄2∈χ

(

logPs̄2
‖h̃2‖2

−
∣

∣Z(s̄1) − s̄2
∣

∣

2
)

(6)

whereZ(s̄1) = h̃H2

(

ỹ − h̃1s̄1

)

/‖h̃2‖2. If the a-priori prob-

ability term (logPs̄2/‖h̃2‖2) were not there [15] (i.e., ML
instead of MAP), then the solution of the maximization in (6)
would be a simple slicer, and only2M metrics (enumeration

x1x2x3…….xL

dcs

Fig. 1. L-PAM constellation for the real (or imaginary) part of theM -QAM
constellation.

over s̄1 and s̄2 in (3) and (4)) were to be computed to obtain
the LLRs of the code bits corresponding tos1 and s2. With
the a-priori probability term, we obtain theexact solution
of (6) with a reasonable increase in the number of metrics
computations which is, interestingly, less than that of the
approximate solution in [5], [6]. In modern communications
standards [16], the real and imaginary parts ofs̄2 correspond
to two orthogonalL-PAM constellations,ψ, whereL =

√
M1.

In Fig. 1, we show theL-PAM one-dimensional constellation
corresponding to the real or imaginary of any complex QAM
constellation. Hence, we rewrite (6) as follows:

max
s̄2∈χ

(

logPs̄2
‖h̃2‖2

−
∣

∣Z(s̄1) − s̄2
∣

∣

2
)

= max
s̄2,r∈ψ

(

logPs̄2,r
‖h̃2‖2

− |Zs̄1,r − s̄2,r|2
)

+ max
s̄2,I∈ψ

(

logPs̄2,I
‖h̃2‖2

− |Zs̄1,I − s̄2,I |2
)

(7)

whereZs̄1,r andZs̄1,I denote the real and imaginary parts of
Z(s̄1), respectively. Furthermore,Ps̄2,r and Ps̄2,I denote the
a-priori probabilities that the real and imaginary parts ofs2
equals̄2,r and s̄2,I , computed using the a-priori LLRs of the
bits corresponding to the real and imaginary parts, respectively.

Next, we use the a-priori probabilities (LLRs) to modify the
decision regions of theL-PAM real and imaginary symbols;
correspondingly apply the slicer to the real and imaginary parts
of Z(s̄1) = h̃H2

(

ỹ − h̃1s̄1

)

/‖h̃2‖2, respectively, to find the
solution of (7); and then compute the metrics in (3) and (4),
which can be significantly simplified using (7). To develop
the method of modifying the decision boundaries, we derive
the decision region of the symbolx1 in Fig. 1 by writing the
conditions onZs̄1,r such that

logPx1

‖h̃2‖2
− |Zs̄1,r−x1|2 >

logPxj

‖h̃2‖2
− |Zs̄1,r−xj |2 , ∀j 6= 1 (8)

Simplifying (8), we get the decision region ofx1 as follows:

Zs̄1,r > max
j>1

(

x1 + xj
2

− log
(

Px1
/Pxj

)

2 (x1 − xj) ‖h̃2‖2

)

(9)

Similarly, the decision region ofxk is given by

max
j>k

Dkj < Zs̄1,r < min
j<k

Dkj , 1 < k < L (10)

and the decision region of the last symbolxL is given by

Zs̄1,r < min
j<L

DLj (11)

where Dkj = Djk =
xk + xj

2
− log

(

Pxk
/Pxj

)

2 (xk − xj) ‖h̃2‖2
(12)

1Assuming square constellation, without loss of generality.
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is called theprobabilistic boundary between the constellation
symbols xj and xk. Equation (12) shows that the bound-
ary between two neighboring symbols moves towards the
symbol with the lower a-priori probability, tending to shrink
its decision region while extending that of the symbol with
the higher a-priori probability. Equation (12) also shows that
without a-priori LLRs (i.e.,Pxk

= 1
L , ∀k), the boundaries

between symbols return to their original values (the average
of constellation symbols amplitudes).

IV. SYMBOLS WITH EMPTY DECISION REGIONS

We prove that the a-priori probability distribution can lead
to constellation symbols with empty decision regions that will
not be chosen by the slicer regardless ofZs̄1,r (or Zs̄1,I ).

Theorem 1: When computing the lower bound of the de-
cision region for the constellation symbolxk, given by
maxj>kDkj , the following can occur:

j∗ > k + 1, where j∗ ≡ argmax
j>k

Dkj (13)

meaning that the lower bound of the symbolxk is not
determined by its boundary with the adjacent symbolxk+1,
but determined instead by its boundary with a farther symbol
xj∗ < xk+1. In this case, all symbols lying betweenxk and
xj∗ (i.e., the constellation symbolsxm, wherek < m < j∗)
do not have decision regions and will not be chosen regardless
of the decision statistic value.

Proof: From (10), the decision boundaries forxm, where
k < m < j∗, are given by

max
(

Dm(m+1), .., Dmj∗ , .., DmL

)

< Zs̄1,r

< min
(

Dm(m−1), .., Dmk, .., Dm1

)

(14)

However, there is no value forZs̄1,r that satisfies (14) if

Dmk < Dmj∗ (15)

In the sequel, we prove that the condition in (15) is satisfied
if j∗ = argmax

j>k
Dkj , i.e.,Dkj∗ > Dkm and, hence,

xj∗ −xm>
log
(

Pxk
/Pxj∗

)

2 (xk − xj∗) ‖h̃2‖2
− log(Pxk

/Pxm
)

2 (xk − xm) ‖h̃2‖2
(16)

(m−j∗) dcs >
log
(

(

Pxk
/Pxj∗

)m−k
(Pxm

/Pxk
)
j∗−k

)

(j∗ − k)(m− k)dcs‖h̃2‖2
(17)

where xk − xj∗ = (j∗ − k) dcs and dcs is the separation
between adjacent real (or imaginary) constellation symbols as
shown in Fig. 1. Sincek < m < j∗, we define

m = k + f, j∗ = m+ g = k + f + g (18)

wheref, g ∈ {0,Z+}. We rewrite (17) as follows:

fg(f+g)d2cs‖h̃2‖2< log
(

(

Pxj∗
/Pxm

)f
(Pxk

/Pxm
)g
)

(19)

Next, we rewrite the condition in (15) as follows:

Dmk−Dmj∗ =
(f+g) dcs

2
−

log

(

(

Pxk

Pxm

)g (Pxj∗

Pxm

)f
)

2fg dcs‖h̃2‖2
(20)

Using the inequality in (19), we boundDmk−Dmj∗ as follows:

Dmk −Dmj∗ <
(f + g) dcs

2
− fg(f + g)d2cs‖h̃2‖2

2fg dcs‖h̃2‖2
Dmk −Dmj∗ < 0, Dmk < Dmj∗ (21)

which concludes the proof.
The practical importance of this theorem is that it can reduce

the algorithm complexity and further speed it up. For example,
if the lower boundary ofx1 is determined byx4 then we do
not need to compute the decision boundaries ofx2 and x3
because they will have empty decision regions.

V. A LGORITHM AND COMPUTATIONAL COMPLEXITY

In the sequel, we summarize the algorithm and show the
receiver model in Fig. 2.
Preprocessing: ComputeH = H̄W and whiten the noise by
computingỹ =

√
Qy, h̃1 =

√
Qh1, andh̃2 =

√
Qh2.

Procedure:
1) Get the decision regions forZs̄1,r, Zs̄1,I , Zs̄2,r, and

Zs̄2,I using the corresponding a priori LLRs as follows:
Initialize k = 1.
While k <= L
A) Compute the lower and upper thresholds of thek-th
constellation symbol asmaxj>kDkj andminj<k Dkj ,
respectively, where

Dkj =
xk + xj

2
−
∑q/2

n=1 ((bn,k − bn,j)La(ci n))

2 (xk − xj) ‖h̃i‖2
(22)

where i ∈ {1, 2}, La(ci n) denotes the a priori LLR
of the code bit cin, and {bn,k, bn,j}q/2n=1 ∈ {0, 1}
are the bit vectors corresponding to the constellation
symbolsxk and xj , respectively. The transition from
the probability domain in (12) to the LLR domain in
(22) is straightforward.
B) If j∗ > k + 1, where j∗ ≡ argmax

j>k
Dkj , set the

decision regions of the symbolsxm, wherek < m < j∗,
to empty, and setk = j∗.

Else, setk = k + 1.
End While

2) Enumeration step over constellation points ofs1 ands2.
For k = 1 :M
a) Compute the following quantities fors̄1(k), s̄2(k) ∈ χ

Z(s̄1)=
h̃H2

‖h̃2‖2
(

ỹ−h̃1s̄1(k)
)

, Z(s̄2)=
h̃H1

‖h̃1‖2
(

ỹ−h̃2s̄2(k)
)

b) Slice the real and imaginary parts ofZ(s̄1) andZ(s̄2)

using the thresholds obtained in Step 1 to obtains̄∗2(k)
and s̄∗1(k), respectively.
c) Compute the following metrics

η1(k) =

q
∑

n=1

(

b̄1,n(k)La(c1n) + b̄∗2,n(k)La(c2n)
)

− ‖ỹ− h̃1s̄1(k)− h̃2s̄
∗
2(k)‖2 (23)

η2(k) =

q
∑

n=1

(

b̄∗1,n(k)La(c1n) + b̄2,n(k)La(c2n)
)

− ‖ỹ− h̃1s̄
∗
1(k)− h̃2s̄2(k)‖2 (24)
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Fig. 2. Receiver model with our proposed approach.

where{b̄1,n(k), b̄2,n(k), b̄∗1,n(k),b̄∗2,n(k)}qn=1 are the bit
vectors ofs̄1(k), s̄2(k), s̄∗1(k), s̄

∗
2(k), respectively.

End For
3) Compute the detector LLRs fori = 1, 2 and0 ≤ n ≤ q

L(cin) = max
k : b̄i,n(k)=1

ηi(k)− max
k : b̄i,n(k)=0

ηi(k) (25)

VI. COMPLEXITY ANALYSIS

We count the number of required metrics computations to
obtain the2log2(M) detector LLRs corresponding tos1 and
s2. To get the new decision regions, we need to compute the
probabilistic boundaries between every two symbols of theL
symbols (for both real and imaginary parts). SinceDjk = Dkj ,
the number of metrics (boundaries) to be computed is

Ns1
metrics = 2

L(L− 1)

2
= L2 − L =M −

√
M < M (26)

Note that these boundaries are computed only once and are
not included inside the enumeration overs1 in (3). Hence, the
total number of metric computations to obtain the LLRs of the
code bits corresponding tos1 is M +Ns1

metrics = 2M −
√
M .

To obtain the2q LLRs corresponding tos (i.e., s1 and s2),
the number of metric computations per tone becomes

NTotal
metrics = 4M − 2

√
M < 4M (27)

In Table I, we compare our algorithm with the Turbo-
LORD (T-LORD) [5] and the brute-force algorithms in terms
of the number of metrics to be computed, number of real
multiplications (Muls), and number of real additions (Adds)
per tone per iteration as function of the constellation sizeand
the number of receive antennas. In Table II, we compare these
algorithms for 256-QAM and two receive antennas where
we observe the significant computational complexity saving
without any performance loss since our algorithm obtains the
exact solution rather than the approximate solution in [5].In
T-LORD [5], while enumerating overs1, three candidates for
s2 are obtained for every possible value of theM candidiases
of s1. Hence, we have3M candidates for the(s1, s2) pair,
and the metric in (23) is computed for each candidate. Doing
the same fors2, we have another3M metrics summing up to
6M metrics to be computed.

VII. C ONCLUSION

We developed theexact max-log MAP detector for IDD
in dual-layer MIMO schemes with computational complexity
less than4M . The idea is to use the a priori LLRs in
modifying the decision thresholds of the constellation symbols.
We also showed that the a priori LLRs can lead to constellation

TABLE I
COMPLEXITY COMPARISON BETWEEN VARIOUSML DETECTORS

Detector Metrics Real Muls Real Adds
Proposed 4M −

2
√

M

(16Nr + 18)M−

2
√

M

(12Nr + 3q + 18)M−

(q + 2)
√

M − 4
T-LORD 6M (16Nr + 48)M (12Nr + 2q + 52)M−

4
Brute force M2 8M2 12M2

− 4M

TABLE II
COMPLEXITY OF VARIOUS ML DETECTORS FORM =256AND Nr = 2

Detector Metrics Real Muls Real Adds
Proposed 992 12768 16732
T-LORD 1536 20480 23548

Brute force 65536 524288 785408

symbols with empty decision regions, reducing the search
space of the slicing block. Comparing the computational
complexity with the Turbo-LORD approximate solution and
the exact brute force solutions, we show that our algorithm
achieves significant complexity reduction while achievingthe
exact max-log MAP solution. We have numerically verified
that our method yields the same performance as the brute force
solution for various simulation parameters but the simulation
results are not shown here due to space limitations.
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