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Abstract—This letter studies the power-limited throughput of
a communication system utilizing incremental redundancy (INR)
hybrid automatic repeat request (HARQ). We use some recent
results on the achievable rates of finite-length codes to analyze the
system performance. With codewords of finite length, we derive
closed-form expressions for the outage probabilities of INR HARQ
and study the throughput in the cases with variable-length coding.
Moreover, we evaluate the effect of feedback delay on the throughput
and derive sufficient conditions for the usefulness of the HARQ
protocols, in terms of power-limited throughput. The results show
that, for a large range of HARQ feedback delays, the throughput is
increased by finite-length coding INR HARQ, if the sub-codeword
lengths are properly adapted.

I. I NTRODUCTION

Hybrid automatic repeat request (HARQ) techniques are com-
monly used in wireless networks to combat the loss of data
packets due to channel fading [1]–[4]. The performance of HARQ
protocols is addressed in various papers, e.g., [1]–[4], where the
results are obtained under the assumption of asymptotically long
codewords. On the other hand, in many applications, such as
vehicle-to-vehicle and vehicle-to-infrastructure communications
for traffic efficiency/safety or real-time video processingfor
augmented reality, the codewords are required to be short (in the
order of∼ 100 channel uses) [5], [6]. Thus, it is interesting to
investigate the performance of HARQ protocols in the presence
of finite-length codewords [7], [8].

In this letter, we study the data transmission efficiency of
HARQ protocols utilizing codewords of finite length. The prob-
lem is cast as the maximization of the power-limited throughput
in the presence of incremental redundancy (INR) HARQ feed-
back. The contributions of the paper are two-fold. 1) We use the
recent results on the achievable rates of finite block-length codes
[9]–[11] to analyze the throughput. With codewords of finite
length, we derive closed-form expressions for the outage proba-
bilities of the INR HARQ in different retransmission roundsand
evaluate the effect of variable-length coding on the throughput.
2) We investigate the effect of feedback delay on the throughput.
Particularly, we present sufficient conditions for the usefulness
of HARQ protocols such that the use of HARQ increases the
throughput compared to the open-loop communication setups. For
a large range of HARQ feedback delays, the results show that the
implementation of finite-length INR HARQ leads to throughput
improvements.
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II. SYSTEM MODEL

Consider a point-to-point communication setup following

Y =
√
PhX + Z, (1)

where P is the transmit power,X is the unit-variance input
message,h denotes the fading coefficient andZ ∼ CN (0, 1) is
the independent and identically distributed (iid) complexGaus-
sian noise added at the receiver. We consider an INR HARQ
protocol in which each data packet is sent using a maximum of
M transmissions.

The system performance is studied in quasi-static conditions,
e.g., [3], [4], where the channel coefficients remain constant
during a packet transmission, and then change to other values
according to the fading probability density function (pdf). As a
motivation for this model, consider the LTE standard; as discussed
in [1], each HARQ round corresponds to one transmission slot
which is 0.5 milliseconds in the LTE standard. Also, for systems
operating at a carrier frequency around 2.5 GHz and in the case
that the receiver is moving with a speed of 2 km/h the coherence
time is equal to 200 ms [1]. This coherence time is 400 times
larger than the time slot duration in LTE. Thus, with proper
selection of the maximum number of retransmissions, the quasi-
static case can properly model the channel characteristics. (For
more motivations for the quasi-static models, see [3], [4].)

Let us define thechannel gain as g
.
= |h|2. The results are

given for Rayleigh fading channels whereh ∼ CN (0, 1) and, as
a result,fg(x) = e−x with fg denoting the channel gain pdf.
In each slot, the channel coefficient is assumed to be known by
the receiver, which is an acceptable assumption in quasi-static
conditions [1]–[4], [9]–[11]. However, no instantaneous channel
state information is assumed to be available at the transmitter
except the HARQ feedback bits.

III. A NALYTICAL RESULTS

In this section, we study the throughput of the INR HARQ
protocol utilizing codewords of finite length. We first obtain a
closed-form expression for the throughput, following the same
procedure as in [2]–[4], except that we add the effect of feedback
delay into the analysis. The throughput, given in (5), is a function
of a set of probabilities that depend on the sub-codewords’ length.
Hence, we use the results of finite-length codes [9]–[11] to obtain
the probability terms. To find the probabilities, we need to use
approximation and bounding techniques, as stated in Lemmas1
and 2. Finally, we derive bounds for the desired HARQ feedback
delays such that the implementation of HARQ increases the
throughput compared to the open-loop communication setup.The
details are presented as follows.
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Using INR HARQ, K information nats are encoded into a
parent codeword of lengthl(M) =

∑M

m=1 lm channel uses. Then,
the parent codeword is divided intoM sub-codewords of length
lm,m = 1, . . . ,M, channel uses which are sent in the successive
transmission rounds. Thus, the equivalent data rate at the end
of roundm is R(m) = K

l(m)
, l(m) =

∑m
n=1 ln, R(0)

.
= ∞. In

each round, the receiver combines all received sub-codewords to
decode the message. The retransmission continues until themes-
sage is correctly decoded or the maximum permitted transmission
round is reached.

Let D (in channel uses) denote the HARQ feedback delay in
each round. If the data transmission is stopped at the end of the
m-th round, the total number of channel uses is

τ(m) =

{

l(m) +mD, if m 6=M

l(M) + (M − 1)D, if m =M
(2)

which is based on the fact that in each retransmission round,
except the last round, an acknowledgement/negative acknowl-
edgement (ACK/NACK) signal is fed back to the transmitter.
In this way, with some manipulations, the expected number of
channel uses in each packet transmission period is found as

T =
M
∑

m=1

lmΩm−1 +D

M−1
∑

m=1

Ωm−1, (3)

where Ωm denotes the probability that the message is not
correctly decoded up to the end of them-th round andΩ0

.
= 1.

If the message is correctly decoded in any round, allK

information nats are received by the receiver. Thus, following the
same arguments as in [2]–[4], the expected number of received
information nats in each packet is given by

K = K(1− Pr(Outage)) = K(1− ΩM ), (4)

where Pr(Outage) = ΩM is the packet outage probability.
Using (3), (4), therenewal-reward theorem [2]–[4] and lm =
K

R(m)
− K

R(m−1)
, the throughput (in nats-per-channel-use (npcu))

is obtained as

η =
K
T =

1− ΩM
∑M

m=1 (
1

R(m)
− 1

R(m−1)
)Ωm−1 +

Df

R(M)

∑M−1
m=1 Ωm−1

.

(5)

Here, we have definedDf .
= D

l(M)
which is referred to as the

relative delay, with respect to the maximum packet length.
To study the power-limited throughput of the INR protocol the

final step is to calculate the probabilitiesΩm,m = 1, . . . ,M. In
the following, we use the recent results of [9]–[11] to findΩm

for the cases with codewords of finite length. Let us first define
an (L,N, P, δ) code as the collection of

• An encoderΥ : {1, . . . , N} 7→ CL which maps the
messagen ∈ {1, . . . , N} into a length-L codewordxn ∈
{x1, . . . , xN} satisfying the power constraint

1

L
‖xj‖2 ≤ P, ∀j. (6)

• A decoderΛ : CL 7→ {1, . . . , N} satisfying the maximum
error probability constraint

max
∀j

Pr(Λ(y) 6= J |J = j) ≤ δ (7)

with y denoting the channel output induced by the transmit-
ted codeword according toy.

The maximum achievable rate of the code is defined as

Rmax(L, P, δ) = sup

{

logN

L
: ∃(L,N, P, δ) code

}

(npcu). (8)

Considering quasi-static conditions, [10], [11] have recently pre-
sented a very tight approximation for the maximum achievable
rate (8) as

Rmax(L, P, δ) = sup {R : Pr(log(1 + gP ) < R) < δ}

− O
(

logL

L

)

(npcu), (9)

which, for codes of rateR npcu, leads to the following error
probability [11, eq. (59)]

δ(L,R, P ) ≈ E

[

Q

(
√
L (log(1 + gP )−R)
√

1− 1
(1+gP )2

)]

. (10)

Here, U(x) = O(V (x)), x → ∞ is defined as
limx→∞ sup |U(x)

V (x) | < ∞ and E[.] is the expectation with
respect to the channel gaing. Also, Q(.) denotes the Gaussian
Q-function. Since the approximation (10) has been shown to
be very tight for sufficiently large values ofL [9]–[11], for
simplicity we will assume that it is exact in the following
(especially when discussing bounds).

From (9)-(10), the probability that the data is not decodable in
roundsn = 1, . . . ,m, of the INR, i.e.,Ωm, is found as

Ωm = E

[

Q

(

√

l(m)

(

log(1 + gP )−R(m)

)

√

1− 1
(1+gP )2

)]

. (11)

Here, (11) is based on the fact that 1) with a quasi-static condition,
the same fading realizationg is experienced in all rounds of a
packet, 2) the receiver combines all received signals of a packet
to decode the message and, 3) for a given value ofK nats,

W(m)(x) =

√
l(m)

(

log(1+xP )− K
l(m)

)

√

1− 1
(1+xP )2

is an increasing function of

l(m) and, thus,Am ⊂ An, n < m for quasi-static channels, where
Am is the event that the data is not decoded in rounds1, . . . ,m.

For Rayleigh fading conditions,Ωm is found as

Ωm =

∫ ∞

0

e−xQ





√

l(m)(log(1 + Px)−R(m))
√

1− 1
(1+Px)2



 dx (12)

which does not have a closed-form expression. Lemmas 1-2
approximate/bound the probabilitiesΩm, ∀m, as follows.

Lemma 1. The probabilitiesΩm, ∀m, are approximated by

Ωm =































1
2

(

1− e
1
P

∑∞
i=0

1
i! (

−e
R(m)

P
)i
(

1− erf(K−i−1√
2l(m)

)
)

−erf(−R(m)

√
l(m)√

2
)

)

, For high SNRs

1− bm√
2π
e−θm

(

e

√

π

2b2m − e
−
√

π

2b2m

)

, For all SNRs

where erf(.) represents the error function,θm
.
= e

R(m)−1
P

and

bm
.
=

√

l(m)P
2

e
2R(m)−1

.
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Proof: At medium/high signal-to-noise ra-
tios (SNRs), (11) is approximated byΩm =
∫∞
0 e−xQ(

√

l(m)(log(1 + xP )−R(m)))dx which leads to

Ωm

(a)
=

√

l(m)

2π

∫ ∞

e
−R(m)

1− e−
te
R(m)

−1
P

t
e−

l(m)
2 (log t)2dt

(b)
=

√

l(m)

2π

∫ ∞

e
−R(m)

t−1e−
l(m)

2 (log t)2dt−
√

l(m)

2π
e

1
P

∞
∑

i=0

1

i!
(
−eR(m)

P
)i
∫ ∞

e
−R(m)

ti−1e−
l(m)

2 (log t)2dt

=
1

2

(

1− erf(−
R(m)

√

l(m)√
2

)−

e
1
P

∞
∑

i=0

1

i!
(
−eR(m)

P
)i
(

1− erf(
K − i− 1
√

2l(m)

)
))

. (13)

Here, (a) is obtained by partial integration, variable transform
t = (1+Px)e−R(m) and the definition of the GaussianQ-function

with Q(∞) = 0, dQ(s(x))
dx = −1√

2π

ds(x)
dx e−

s(x)2

2 . Then,(b) follows
from the Taylor expansion of the first exponential term, and the
last equality is obtained by some manipulations and the definition
of the error function erf(x) = 2√

π

∫ x

0 e
−t2dt.

For the second approximation approach, we implement

Q

(√
l(m)(log(1+xP )−R(m))

√

1− 1
(1+xP )2

)

≃ Zm with

Zm(x)
(c)
=



















1 x ≤ θm −
√

π
2b2m

1
2 − bm√

2π
(x− θm) x ∈

[

θm −
√

π
2b2m

, θm +
√

π
2b2m

]

0 x ≥ θm +
√

π
2b2m

(14)

which results in

Ωm =

∫ ∞

0

e−xZm(x)dx
(d)
= 1− bm√

2π
e−θm

(

e

√

π

2b2m − e
−
√

π

2b2m

)

.

(15)

Here,(c) is obtained by using the linearization technique for the

functionQ

(√
l(m)(log(1+xP )−R(m))

√

1− 1
(1+xP )2

)

at x = θm and(d) follows

from (14) and some manipulations.
Lemma 2. The probabilitiesΩm, ∀m, are bounded by

vm ≤ Ωm ≤ um, ∀m, ǫ > 0,

vm = 1
2

(

1− erf(−θmbm√
2

)− e
1−2θmb

2
m

2b2m (1− erf(1−b2mθm√
2bm

))
)

,

um = 1− e−θm+e−ψm

2 + 1
2e

αmP−ǫl(m)Γ(1− ǫl(m), ψm + 1
P
),

ψm
.
= e

(R(m)+
ǫ
2
)−1

P
, αm

.
= 1

P
+Kǫ+

l(m)ǫ
2

2 .

(16)

Proof: Q(x) is a decreasing function andW(m)(x) =√
l(m)(log(1+xP )−R(m))

√

1− 1
(1+xP)2

is concave inx. Thus, from (11), a lower

bound onΩm is obtained ifW(m)(x) is replaced by its first-
order Taylor expansion at any point. Using the Taylor expansion
of W(m)(x) at x = θm, we have

Ωm ≥
∫ ∞

0

e−xQ(bm(x− θm))dx

(e)
=

∫ ∞

0

bm(1− e−x)√
2π

e−
b2m
2 (x−θm)2dx = vm, (17)

where(e) comes from partial integration andvm given in (16) is
found by some manipulations and the definition of error function.

The upper bound is found by

Ωm

(f)

≤ 1− e−θm + 1
2

∞
∫

θm

e−xe
−
l(m)

2 (log(1+Px)− K
l(m)

)2

dx

(g)

≤ 1− e−θm+e−ψm

2 +

e
Kǫ+

ǫ2l(m)
2

2

∫∞
θm

(1 + Px)−ǫl(m)e−xdx = um.

(18)

Here,(f) is obtained by (12), using the inequality

Q(x) ≤
{

1, if x < 0
1
2e

− x2

2 , if x ≥ 0
(19)

and removing the denominator in (12) whenx ≥ θm. Then,(g)
follows from (a − b)2 ≥ max{0, 2ǫa − 2bǫ − ǫ2}, ∀a ≥ b, ǫ >

0, and some manipulations. Finally, the last equality is given
by the definition of the incomplete Gamma functionΓ(n, x) =
∫∞
x
tn−1e−tdt.

Depending on the SNR/the sub-codewords length, the approxi-
mations/bounds in Lemmas 1-2 are useful in different conditions.
Finally, to enjoy the benefits of the INR HARQ the channel code
should satisfy the following requirements: 1) A parent codethat
can be punctured into rate-optimized sub-codewords and 2) a
decoder with performance close to (11) for all retransmissions.
There exist several practical finite-length code designs, e.g., [12],
[13], that satisfy these requirements.

A. On the Effect of Feedback Cost

With no HARQ (open-loop setup), the parent codeword of
length l(M) is sent in one shot. Thus, with uniform power
allocation, on which we focus, the outage probability isΩM ,
the same as in the HARQ-based scheme. Also, as there is no
feedback, the throughput of the non-HARQ scheme is found as

ηOpen-loop=
K

l(M)
(1− Pr(Outage)) = R(M)(1− ΩM ). (20)

From (5), (20), the intuition behind the HARQ protocols is as
follows. If the channel quality is low, all possible transmissions of
the HARQ are used and the system performance will be the same
as in the case with no HARQ (except for the additional feedback
delays). But, if the channel quality is high, the message maybe
correctly decoded at the end of them-th,m < M round, and the
channel uses for roundsm+1, . . . ,M are saved. The cost of this
gambling is the cost for feedback, i.e., the termD

∑M−1
m=1 Ωm−1

in (3). Hence, depending on the feedback delay and the channel
conditions, using HARQ may or may not improve the throughput.

To find the acceptable range of feedback delays, we can
maximize (20) for a given power and then sweep on different
values of relative feedback delay, i.e.,Df in (5), to find the
maximum value ofDf for which the HARQ-based approach leads
to higher throughput, compared to non-HARQ scheme. Sufficient
conditions for the usefulness of the HARQ, i.e., lower bounds on
the acceptable range of feedback delays such that the throughput
is improved by the HARQ, are obtained as follows.
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For every given value of power and information nats, optimize
l(M) in terms of the open-loop throughput (20). Consider the same

packet lengthl(M) and fixed-length coding, i.e.,lm =
l(M)

M
, ∀m,

for HARQ, which is not necessarily optimal for HARQ-based
scheme, in terms of throughput. Then, as the HARQ and the non-
HARQ schemes have the same outage probability, the throughput
is increased by HARQ if it results in less expected delay. Hence,
from (3), a sufficient condition for the usefulness of HARQ is
given byT ≤ l(M) leading toDf ≤ r with

r =
1− 1

M

∑M

m=1 Ωm−1
∑M−1

m=1 Ωm−1

. (21)

Using Lemma 2,Ω0 = 1 and because (21) is a decreasing
function ofΩm, ∀m, we have

M − 1−∑M−1
m=1 um

M(1 +
∑M−2

m=1 um)
≤ r ≤ M − 1−∑M−1

m=1 vm

M(1 +
∑M−2

m=1 vm)
(22)

with um andvm derived in (16). Note that, while (21) provides
sufficient conditions for the HARQ feedback delay with fixed-
length coding, variable-length HARQ indeed does better, and
larger range of feedback delays are tolerated in the variable-length
coding scheme. The numerical results are presented in the sequel.

IV. N UMERICAL RESULTS AND CONCLUSIONS

According to [10], [11], the approximations in (9) and (10) are
very tight for sufficiently long sub-codewords, and the tightness
increases with the sub-codewords’ length. For the numerical re-
sults, we consider the cases withlm ≥ 100, ∀m, channel uses, for
which the approximation is tight enough, and we do not consider
shorter sub-codewords. Our choice oflm ≥ 100 as the minimum
possible length is motivated by [11, Fig. 2] where the relative
difference of the exact and the approximate achievable rates is
less than2% for the cases with codewords of length≥ 100.
We are further motivated for our choice of the sub-codewords
length by reports such as [5], which suggest the practical codes
of interest for, e.g., vehicle-to-vehicle communication to be in the
range of100− 300 channel uses.

Shown in Fig. 1a is the throughput achieved by the variable-
and the fixed-length coding INR HARQ andDf = 0. Here, the
results are obtained for the cases with a maximum ofM = 2
transmissions, both the number of information nats and the sub-
codewords’ length are optimized in terms of throughput, andthe
simulation results are compared with the ones obtained via the
approximation techniques of Lemma 1. SettingK = 600 nats,
Fig. 1b demonstrates the throughput gain of the variable-length
HARQ, i.e., ∆ = η−ηOpen-loop

ηOpen-loop % with η being the throughput in
variable-length HARQ. Finally, using fixed-length coding,Fig.
1c shows the acceptable range of feedback delay and compares
the results with (21) and the bounds developed in (22), i.e.,when
the probabilities are bounded via Lemma 2. In harmony with
Lemma 1, the approximations in (13) and (15) are tight at high
and all SNRs, respectively (Fig. 1a). Also, variable-length coding
INR leads to throughput increment, compared to the fixed-length
coding INR and the open-loop setup, especially at high SNRs
(Figs. 1a-1b). As illustrated in Fig. 1c, the bounds developed
in Lemma 2 and the sufficient condition in (21) are very tight
for a large range of SNR. Also, the acceptable range of HARQ
feedback delay, in terms of throughput, is very low at medium
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Figure 1. (a): Throughput, (b): throughput gain and (c): acceptable relative
feedback delay vs SNR,M = 2. In subplot (a), both the number of information
nats and the sub-codewords’ length are optimized in terms ofthroughput. In
subplots (b) and (c),K = 600 andK = 300, 600 nats, respectively.

SNRs while its effect is relaxed at low and high SNRs. Finally,
the acceptable range of feedback delay decreases withK. To
summarize, using INR HARQ with finite-length codes results
in throughput increment for a large range of feedback delays,
particularly when the SNR increases.
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