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Joint Transceiver Optimization for Two-Way MIMO Relay Systems with
MSE Constraints
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Abstract—Transceiver design for two-way multiple-input
multiple-output (MIMO) relay systems has attracted much re-
search interest recently. However, there is little research on the
impact of quality-of-service (QoS) constraints on two-way MIMO
relay systems, which greatly affects the user experience. In this
letter, we propose a transceiver design for two-way MIMO relay
systems which minimizes the total network transmission power
subjecting to QoS constraints expressed as upper-bounds on the
mean-squared error (MSE) of the signal waveform estimation at
both destinations. An iterative algorithm is developed to opti-
mize the source, relay, and receive matrices. Simulation results
demonstrate the fast convergence of the proposed algorithm.

Index Terms—Two-way relay, MIMO relay, QoS, MMSE,
linear non-regenerative relay.

I. INTRODUCTION

Wireless relaying is a well-known method to extend the
cell coverage and increase the network capacity in wireless
communication [1]. When multiple antennas are mounted on
one or more nodes, we call such relay system a multiple-
input multiple-output (MIMO) relay system. As a promising
technique for high-speed reliable data transmission, MIMO
relay communication has attracted much research interest
recently [2], [3].

In a two-way relay communication system, two source
nodes exchange their information through an assisting relay
node. Compared with other relay strategies such as the digital
network coding [4] and the physical network coding [5],
the amplify-and-forward (AF) strategy has lower complex-
ity, shorter processing delay, and lower implementation cost.
Therefore, the AF strategy is considered in this letter. For
two-way AF MIMO relay systems, the optimal relay and
source matrices have been developed in [6] to maximize
the two-way sum mutual information (MI). Joint source and
relay optimization for two-way MIMO relay systems has
been studied in [7] to minimize the total mean-squared error
(MSE) of the signal waveform estimation. Recently, a unified
framework has been developed in [8] to optimize the source
and relay matrices for a broad class of objective functions.

The aim of [6]-[8] is to optimize a given objective function,
subjecting to the transmission power constraint at each node.
However, the quality-of-service (QoS) constraints are not
addressed in [6]-[8]. Note that in practical communication
systems, QoS criteria are very important, as they greatly affect
the user experience. For one-way MIMO relay systems, the
QoS-constrained source and relay precoding matrices design
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Fig. 1. Block diagram of a two-way MIMO relay communication system.

has been studied in [9]-[11]. However, the approach in [9]-[11]
cannot be applied to two-way MIMO relay systems.

In this letter, we propose a transceiver design for AF two-
way MIMO relay systems which minimizes the total network
transmission power subjecting to QoS constraints, which has
not been considered before. Based on the strong link between
the MSE and most commonly used MIMO communication
system objective functions [8], the QoS criteria are set up as
upper-bounds on the MSE of the signal waveform estimation at
both destinations. Since the QoS-constrained two-way MIMO
relay optimization problem is highly nonconvex with matrix
variables, we propose an iterative algorithm to optimize the
source, relay, and receive matrices through solving standard
convex subproblems, which attains a stationary point (possibly
suboptimal) of the problem. Simulation results demonstrate the
fast convergence of the proposed algorithm.

II. SYSTEM MODEL

We consider a two-way MIMO communication system
where two nodes exchange information via a relay node as
shown in Fig. 1. We assume that N antennas are deployed
at each source/destination while M antennas are equipped at
the relay node. The communication process is completed in
two time slots. At the first time slot, source node i transmits
xi = Bisi, i = 1, 2, where si is the Nb×1 (Nb ≤ min(N,M))
source signal vector, Bi is the N×Nb source precoding matrix.
The received signal vector at the relay node can be written as

yr =
2∑

i=1

Hr,iBisi + vr (1)

where Hr,i, i = 1, 2, is the M × N channel matrix from
source i to the relay node and vr is the M × 1 noise vector
at the relay node.

At the second time slot, yr is linearly precoded at the relay
node as

xr = Fyr (2)

where F is the M × M relay precoding matrix. The relay
node then broadcasts xr to two destination nodes. The received
signal vector at destination i can be written as

yi =Hi,rxr + vi

=Hi,rF
2∑

i=1

Hr,iBisi +Hi,rFvr + vi, i = 1, 2 (3)
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where Hi,r is the N ×M channel matrix between the relay
node and destination i, and vi is the N × 1 noise vector at
destination i.

We assume that all channel matrices are quasi-static, i.e.,
they remain constant over one time block, but can change
to another value in the next block. Such quasi-static channel
model has been widely used in two-way MIMO relay commu-
nications [6]-[8]. Two destination nodes can know the channel
state information (CSI) of Hi,r and Hr,i, i = 1, 2, through
channel training and estimation [12]. One of the source nodes
takes the responsibility for the optimization of B1, B2, and F,
and then transmits them to other nodes. In this way, all nodes
in the system have the information of B1, B2, and F. We also
assume that E[sis

H
i ] = INb

, i = 1, 2, where E[·] denotes the
statistical expectation, (·)H stands for the Hermitian transpose,
and In denotes the n × n identity matrix. All noises are
independent and identically distributed (i.i.d.) additive white
Gaussian noise with zero mean and unit variance.

According to the assumptions and analysis above, the self-
interference (SI) term Hi,rFHr,iBisi in (3) can be easily
removed, since all information on this term is known to
destination i. The received signal vector after the SI removal
can be written as

ỹi = H̄isi′ + v̄i, i = 1, 2 (4)

where H̄i , Hi,rFHr,i′Bi′ is the equivalent MIMO channel
between source i′ and destination i, and v̄i , Hi,rFvr + vi

is the equivalent noise vector at destination i. Here i′ = 1 for
i = 2, and i′ = 2 for i = 1.

Due to their low computational complexity, linear receivers
are used at the destination nodes to retrieve the transmitted
signals. Denoting Wi as the N × Nb weight matrix at
destination i, the estimated signal vector is given by

ŝi′ = WH
i ỹi, i = 1, 2. (5)

III. PROPOSED ALGORITHM WITH QOS CONSTRAINTS

In this section, we develop an iterative algorithm to optimize
the source precoding matrices B1, B2, the relay precoding
matrix F, and the destination receive matrices W1, W2 to
minimize the total transmission power of the source and relay
nodes when certain QoS constraints are satisfied. From (1)
and (2), the transmission power consumed by the relay node
is given by

Pr = tr(F(Hr,1B1B
H
1 HH

r,1+Hr,2B2B
H
2 HH

r,2+IM )FH) (6)

where tr(·) denotes the matrix trace. The transmission power
consumed by the source node i is

Pi = tr(BiB
H
i ), i = 1, 2. (7)

The MSE of the signal waveform estimation at destination i
is given by

MSEi = tr
(
E
[
(ŝi′ − si′)(ŝi′ − si′)

H
])
, i = 1, 2. (8)

By substituting (4) and (5) into (8), we obtain that

MSEi = tr
(
(W

H
i H̄i−INb

)(WH
i H̄i−INb

)H+WH
i CiWi

)
(9)

where Ci , E[v̄iv̄
H
i ] = Hi,rFF

HHH
i,r+IN is the covariance

matrix of v̄i.
From (6)-(9), the joint source, relay, and receive matrices

optimization problem for two-way MIMO relay system with
QoS constraints can be written as

min
W1,W2,B1,B2,F

Pr + P1 + P2 (10)

s.t. MSEi ≤ ei, i = 1, 2 (11)

where (10) is the objective function of the total transmission
power in the system, and ei > 0 defines the upper-bound
of MSEi. In practical systems, MSE effectively measures
the accuracy of the signal waveform estimation at the re-
ceivers. Moreover, MSE is directly related to other commonly
used QoS criteria such as the system BER and the source-
destination mutual information [9]. The problem (10)-(11) is
nonconvex with matrix variables, and the globally optimal
solution is computationally intractable to obtain. Hereafter,
we develop a computationally efficient algorithm to optimize
the source, relay, and receive matrices in an iterative fashion
through solving convex subproblems.

A. Optimal Receive Matrices

Since W1 and W2 do not appear in the objective function
(10), for any fixed B1, B2, and F, we choose Wi to minimize
MSEi in (9). The optimal Wi is the Wiener filter given by

Wi = (H̄iH̄
H
i +Ci)

−1H̄i, i = 1, 2 (12)

where (·)−1 denotes the matrix inversion.

B. Relay Matrix Optimization

With fixed (W1,W2) and (B1,B2), we reformulate the
problem (10)-(11) as a semi-definite programming (SDP)
problem to optimize F. By introducing

Hi , Hr,i′Bi′ , Gi , WH
i Hi,r, i = 1, 2 (13)

and using the following identities

tr(ATB) = (vec(A))T vec(B)

tr(AHBAC) = vec(A)H(CT⊗B)vec(A) (14)

where (·)T denotes the matrix transpose, ⊗ denotes the matrix
Kronecker product and vec(X) stands for a column vector
obtained by stacking all columns of X on top of each other,
we obtain that

tr(WH
i H̄iH̄

H
i Wi) = tr(GiFHiH

H
i FHGH

i )

= fH
(
(HiH

H
i )T⊗(GH

i Gi)
)
f (15)

tr(WH
i H̄i) =

(
vec((HiGi)

T )
)T

f (16)

tr(WH
i Hi,rFF

HHH
i,rWi) = fH(IM⊗(GH

i Gi))f (17)

where f , vec(F). By substituting (15)-(17) back into (9),
MSEi can be expressed as

MSEi = fHAif − cHi f − fHci + ti (18)

where Ai ,
(
(HiH

H
i )T+IM

)
⊗(GH

i Gi), ci , vec(GH
i HH

i ),
and ti , tr(WH

i Wi) +Nb.
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Substituting (13) back into (6) and using (14), we have

Pr = fH
(
(H2H

H
2 +H1H

H
1 + IM )T⊗IM

)
f .

Note that we can ignore the term P1 + P2 in (10) when
optimizing F with given (W1,W2) and (B1,B2), since
it is free of the optimization variable F. By introducing a
new auxiliary variable p, which satisfies p ≥ fHΦf with
Φ , (H2H

H
2 +H1H

H
1 + IM )T ⊗ IM , and using the Schur

complement, the problem (10)-(11) can be equivalently rewrit-
ten as the following SDP problem

min
p,f

p (19)

s.t.

[
p fH

f Φ−1

]
≽ 0 (20)[

ei − ti + cHi f + fHci fHA
1
2
i

(A
1
2
i )

Hf IM2

]
≽ 0, i = 1, 2 (21)

where for a matrix A, A ≽ 0 means that A is a positive semi-
definite (PSD) matrix. The problem (19)-(21) can be efficiently
solved by the disciplined convex programming toolbox CVX
[13].

C. Source Matrices Optimization

With given Wi and F, Bi can be optimized by solving the
following problem

min
Bi

tr
(
BH

i (IN +HH
r,iF

HFHr,i)Bi

)
(22)

s.t. tr
(
(H̃iBi − INb

)(H̃iBi − INb
)H

)
≤ ẽi′ (23)

where ẽi′ , ei′ − tr
(
WH

i′ (Hi′,rFF
HHH

i′,r + IN )Wi′
)
, H̃i ,

WH
i′ Hi′,rFHr,i. By introducing Di , IN + HH

r,iF
HFHr,i

and applying the Lagrange multiplier method to the problem
(22)-(23), we obtain

Li = tr
(
BH

i DiBi + µ(BH
i H̃H

i H̃iBi

−H̃iBi −BH
i H̃H

i + INb
)
)
− µẽi′ (24)

where µ ≥ 0 is the Lagrangian multiplier. By taking the
derivative of (24) with respect to Bi, we obtain

Bi = µ(Di + µH̃H
i H̃i)

−1H̃H
i . (25)

The Lagrangian multiplier µ in (25) can be found from the
following complementary slackness condition

µ
(
tr
(
(H̃iBi − INb

)(H̃iBi − INb
)H

)
− ẽi′

)
= 0. (26)

Obviously, (26) holds if µ = 0. However, this results in Bi =
0. Thus, there must be µ > 0, and Bi in (25) must satisfy

tr
(
(H̃iBi − INb

)(H̃iBi − INb
)H

)
= ẽi′ . (27)

Let us introduce the singular value decomposition (SVD) of
H̃i = UiΛiV

H
i , where the dimensions of Ui, Λi, and Vi are

Nb ×Nb, Nb ×Nb, and N ×Nb, respectively. By substituting
(25) into (27), we obtain

tr
(
(Λi(D̃i/µ+Λ2

i )
−1Λi − INb

)2
)
= ẽi′ (28)

TABLE I
PROCEDURE OF THE PROPOSED ALGORITHM

1) Initialize the algorithm at feasible B
(0)
1 ,B

(0)
2 , and F(0); set n = 0.

2) Update W
(n)
1 and W

(n)
2 with fixed B

(n)
1 ,B

(n)
2 , and F(n), as shown

in (12).
3) Solve the SDP problem (19)-(21) using given W

(n)
1 ,W

(n)
2 and

B
(n)
1 ,B

(n)
2 to obtain F(n+1).

4) Obtain B
(n+1)
1 ,B

(n+1)
2 with known W

(n)
1 ,W

(n)
2 and F(n+1)

according to (25).
5) If max |F(n+1) −F(n)| < ε, then end; otherwise set n = n+1 and

go to step 2).

where D̃i , VH
i DiVi. By introducing the eigenvalue de-

composition of Λ−1
i D̃iΛ

−1
i = QiΣiQ

H
i , the left-hand side

of (28) can be written as

gi(µ) , tr
(
((Σi/µ+ INb

)−1 − INb
)2
)
=

Nb∑
k=1

σ2
i,k

(σi,k + µ)2

where σi,k, k = 1, · · · , Nb, is the kth diagonal element of Σi.
It can be clearly seen that gi(µ) is monotonically decreasing
with respect to µ when µ > 0. Thus, the unique solution of
(28) can be obtained by the bisection method.

Now the original joint source, relay, and receive matri-
ces optimization problem (10)-(11) can be solved using the
proposed iterative algorithm. This algorithm starts at random
feasible B1, B2, and F. At each iteration, we first optimize
W1 and W2 based on B1, B2, and F from the previous
iteration using (12). Then we update F with given Bi and
Wi, i = 1, 2, by solving the problem (19)-(21). Finally,
we optimize B1 and B2 based on known W1, W2, and F
according to (25). We continuously update five matrices in
an alternating fashion till convergence. The procedure of the
proposed algorithm is summarized in Table I, where the super-
script (n) denotes the number of iterations, max | · | denotes
the maximum among the absolute value of all elements in
a matrix, and ε is a positive constant close to 0. Note that
each step of optimization may either decrease or maintain
but cannot increase the objective function (10). Moreover, the
objective function is lower bounded by at least zero. Thus, the
proposed algorithm converges.

At the convergence point, since F(n) is the optimal solution
to the relay matrix optimization problem (19)-(21), and B

(n)
i is

the optimal solution to the source matrix optimization problem
(22)-(23), we obtain that

tr
(
∇FJ(Θ

(n))T (F− F(n))
)
≥ 0 (29)

tr
(
∇BiJ(Θ

(n))T (Bi −B
(n)
i )

)
≥ 0, i = 1, 2 (30)

where Θ(n) ,
[
F(n),B

(n)
1 ,B

(n)
2

]
and ∇AJ(Θ(n)) is the

gradient of the objective function (10) along the direction
of A ∈ {B1,B2,F} at Θ(n). Summing up (29) and
(30), we have tr

(
∇J(Θ(n))T (Θ − Θ(n))

)
≥ 0, where

∇J(Θ(n)) ,
[
∇FJ(Θ

(n)),∇B1J(Θ
(n)),∇B2J(Θ

(n))
]
, in-

dicating that Θ(n) is (at least) a stationary point of (10).
As the optimization problem (10)-(11) is nonconvex with
matrix variables, the globally optimal solution is intractable.
Therefore, we cannot compute the gap between the solution
obtained by the proposed algorithm and the globally optimal
solution.
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Fig. 2. Total power (dB) versus number of iterations.

In each iteration of the proposed algorithm, the major
computation task lies in solving the SDP problem (19)-
(21) to update F, which has a worst-case complexity order
of O((M2 + 1)4.5) [14]. Since the amount of computation
required for updating Wi and Bi, i = 1, 2, is negligible com-
pared with that of solving the SDP problem, the per-iteration
complexity of the proposed algorithm is O((M2 + 1)4.5).
With the advancement of modern chip design, this amount
of computation can be handled by the source nodes.

IV. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed
algorithm through numerical simulations. All channel matrices
have complex Gaussian entries with zero mean and unit
variance, while F and Bi are initialized as random matrices
with complex Gaussian entries of zero mean and variance of
0.5 and 2, respectively. We assume that MSE1 = MSE2 and
normalize the MSE (9) by the number of data streams to
obtain the normalized MSE (NMSE). All simulation results
are averaged over 1000 independent channel realizations.

In the first example, we investigate the convergence speed
of the proposed algorithm. We simulate a two-way MIMO
relay system with Nb = N = 2, and M = 4. Fig. 2 shows
the total transmission power versus the number of iterations
when the NMSE is set to 0.3, 0.6, and 0.9, respectively. It
can be seen from Fig. 2 that the proposed algorithm converges
typically within ten iterations. In fact, the decreasing of the
total power after four iterations is very small. Therefore, only
a small number of iterations are required to achieve a good
performance. This indicates that the proposed algorithm has
a low computational complexity and short delay, which is
important for practical two-way MIMO relay systems. It can
also be seen from Fig. 2 that when the MSE constraints
become stricter, more transmission power is needed to meet
stricter QoS requirements, which reflects the typical QoS-cost
tradeoff in communication systems.

In the second example, we compare the total power versus
the NMSE of the proposed iterative algorithm, the naive
amplify-and-forward (NAF) algorithm where B1, B2, and F
are scaled identity matrices satisfying the MSE constraints,
and the SVD-based algorithm in [8]. We set Nb = N = 2. It
can be clearly seen from Fig. 3 that the proposed algorithm
requires much less total power than the NAF algorithm and the
SVD-based algorithm. We also observe that using the proposed
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Fig. 3. Total power (dB) versus NMSE with different M .

algorithm, the system with M = 5 needs less total power than
the system with M = 4.

V. CONCLUSIONS

We investigated the QoS issue in two-way MIMO relay
systems. An iterative algorithm has been developed to opti-
mize the source, relay, and receive matrices to minimize the
total transmission power when QoS-constraints on MSE are
satisfied. The fast convergence of the proposed algorithm has
been demonstrated through numerical simulations.
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