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Compute-and-Forward on a Multi-User

Multi-Relay Channel
Mohieddine El Soussi Abdellatif Zaidi Luc Vandendorpe

Abstract

In this paper, we consider a system in which multiple users communicate with a destination

with the help of multiple half-duplex relays. Based on the compute-and-forward scheme, each relay,

instead of decoding the users’ messages, decodes an integer-valued linear combination that relates the

transmitted messages. Then, it forwards the linear combination towards the destination. Given these

linear combinations, the destination may or may not recover the transmitted messages since the linear

combinations are not always full rank. Therefore, we propose an algorithm where we optimize the

precoding factor at the users such that the probability that the equations are full rank is increased and

that the transmission rate is maximized. We show, through some numerical examples, the effectiveness

of our algorithm and the advantage of performing precoding allocation at the users. Also, we show that

this scheme can outperform standard relaying techniques in certain regimes.

Index Terms

Compute-and-forward, network coding, lattice codes, relay channel, optimization.

I. INTRODUCTION

Network coding is a promising technique for modern communication networks. It was first

introduced by Ahlswede et al. in [1] for wired networks. It allows each intermediate node to

send out a function of the received packets from multiple sources [2]. In general, the function

This work has been supported in part by the IAP BESTCOM project funded by BELSPO and FP7 project NEWCOM#.

Mohieddine El Soussi and Luc Vandendorpe are with ICTEAM, Université catholique de Louvain, Place du Levant, 2, 1348
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does not need to be linear; however, most of the research on network coding has focused on

linear codes since they have some noticeable features, in particular simplicity (e.g., see [3]).

For wireless networks, lattice codes attract great attention since they are based on linear

structured codes. Recently, “Compute-and-forward” (CoF) strategy, which is based on lattice

codes, has been proposed [4]. This strategy implements network coding, where the receivers,

instead of decoding the transmitted messages, decode finite-field linear combinations of trans-

mitted messages. A receiver that is given a sufficient number of linear combinations recovers

the transmitted messages by solving a system of independent linear equations that relate the

transmitted messages. This strategy has been considered for different communication systems

including the two-way relay channel [5], the Gaussian network [4] and the multiple access relay

channel (MARC) [6].

In this work, we consider a system where multiple users communicate with a destination

with the help of multiple relays as shown in Figure 1. The relays use CoF strategy where each

relay decodes an integer-valued linear combination that relates the transmitted codewords and

forwards it to the destination.

The multi-user multi-relay channel with CoF strategy has been considered in [7], [4], [8].

In [7], the authors propose a method to compute the integer coefficient vectors of the linear

combinations. In this method, the relays jointly optimize the integer vectors in such a way that

the transmission rate is maximized and the matrix formed by these vectors is full rank. This

method is not practical for large networks since additional signaling overhead is needed among

the relays. In [4] and in contrast to [7], each relay independently (i.e. no coordination among

the relays) computes an integer vector. Hence, there is a possibility that the received linear

combinations at the destination are not full rank and thus the destination is not able to decode

the transmitted messages. The authors in [4] propose a method that forces each relay to compute

a linear combination with an integer coefficient that is different from zero. The integer coefficient

that is different from zero varies from one relay to another. They showed that the probability

of rank failure decreases at the expense of lower transmission rate. In [8], the authors study the

problem of maximizing the multicast throughput by properly allocating the resources (time and

power) for given integer vectors. However, they assume that all users transmit with the same

power.

In this work, we extend our previous work [6] to the case of multi-user and multi-relay. In
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[6], we maximize the transmission rate by properly allocating the precoding factors (powers) at

the users and computing the integer coefficients. The integer coefficients are jointly computed

as in [7]. In this setting, each relay independently computes a linear combination. We show that,

by considering precoding allocation at the users, the probability of rank failure at the destination

decreases since the precoding factor alters the channels between the users and the relays and

hence alters the integer coefficient vectors. Thus, we aim to allocate the powers at the users in

such a way that the received linear combinations at the destination are full rank and that the

transmission rate is maximized.
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Fig. 1: Multi-user multi-relay network

II. SYSTEM MODEL

We consider the communication system shown in Figure 1 where a set of M users Um,

m = 1, . . . ,M , communicate with a destination with the help of M relays. Each user Um wants

to transmit a message Wum , which belongs to a set of alphabets Wum , to the destination reliably

in 2n uses of the channel. At the end of the transmission, the destination recovers the transmitted

messages using its outputs. Let Rum be the transmission rate of message Wum . We concentrate

on the symmetric rate case, i.e., Rum = Rsym = R. We divide the transmission time into two

transmission periods with each of length n channel uses. Also, we assume that the users are

unable to communicate directly with the destination and the relays operate in a half-duplex

mode.

During the first transmission period, each user Um encodes its message Wum ∈ [1,22nR
] into

a codeword xum using nested lattice codes [4] [6] and sends it over the channel. Let yrm be the

October 2, 2018 DRAFT



4

signal received respectively at relay m during this period. This signal is given by

yrm =

M

∑

i=1

hui,rmxui + zrm

where hui,rm is the channel gain on the link between user Ui and relay m, and zrm is additive

background noise at relay m.

During the second transmission period, each relay forwards the decoded linear combination

to the destination through its own bit pipe with rate Ro bits per channel use.

Throughout the paper, we assume that all channel gains are real-valued and fixed. We also

assume that the users have full channel state informations (CSI) and that relay m only knows the

channel vector hm = [hu1,rm , hu2,rm , . . . , huM ,rm]
T
∈ RM to itself; and the noises at the relays are

independent among each others, and independently and identically distributed (i.i.d) Gaussian,

with zero mean and variance N . Furthermore, we consider the following individual constraints

on the transmitted power (per codeword),

E[∥xum∥
2
] = nβ2

umP ≤ nPum , m = 1, . . . ,M (1)

where Pum ≥ 0 is a constraint imposed by the system; P ≥ 0 is given, and βum is the precoding

factor that can be chosen to adjust the actual transmitted power, and is such that 0 ≤ ∣βum ∣ ≤

√

Pum/P .

A. Notations

The following notations are used throughout the paper. For convenience, we use the shorthand

vector notation β = [βu1 , βu2 , . . . , βuM ]
T
∈ RM . We also use β○hm ∈ RM to denote the Hadamard

product of β and hm, In to denote n-by-n identity matrix and rank(X) to denote the rank of

matrix X. Finally, we assume that logarithms are taken to base 2; and, for x ∈ R, log+(x) ∶=

max{log(x),0}.

III. COMPUTE-AND-FORWARD STRATEGY

The following proposition provides an achievable symmetric-rate for the multi-user multi-relay

model that we study.

Proposition 1: For any set of channel matrix H = [h1, h1, . . . , hM]
T
∈ RM×M , the following

symmetric-rate is achievable for the model that we study [4, Theorem 5][6, Proposition 1]:

RCoF
sym = max

{am}Mm=1,β
min{min

m
R(am,hm,β), Ro} , (2)
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where the maximization is over the precoding vector β such that 0 ≤ ∣βum ∣ ≤

√

Pum/P and over
the integer coefficients am ∈ ZM , m = 1, . . . ,M , such that rank(A) =M , A = [a1, a2, . . . ,aM]

T

∈ ZM×M , and R(am,hm,β) is given by

R(am,hm,β) = log
+
⎛

⎝

(∥am∥
2
−

P ((β ○ hm)
Tam)

2

N + P ∥β ○ hm∥
2
)

−1
⎞

⎠

. (3)

In this strategy, each relay independently computes a linear combination that relates the users’

codewords and then forwards it to the destination. The destination recovers the transmitted

messages only if the received linear combinations are full rank. In order to increase the probability

that the received linear combinations are full rank and to maximize the transmission rate of

Proposition 1, we develop at the users an iterative algorithm that finds the optimum precoding

vector β.

IV. SYMMETRIC RATE OPTIMIZATION

The following section is devoted to finding optimal precoding and integer-coefficients that

maximize the symmetric-rate of Proposition 1.

1) Problem Formulation: Consider the symmetric-rate RCoF
sym as given in Proposition 1. The

optimization problem can be stated as:

(OP) : max
{am}Mm=1, β

min{min
m

R(am,hm,β), Ro} (4a)

s. t. −

√

Pum
P

≤ βum ≤

√

Pum
P

(4b)

rank(A) =M. (4c)

The optimization problem (OP) is a non-linear mixed integer optimization problem. Thus it is

hard to find β and {am}
M
m=1 jointly in a reasonable time [6]. Therefore, we propose an iterative

optimization where we find appropriate precoding vector β and integer coefficients {am}
M
m=1

alternately. Let us denote by RCoF
sym[ι] the value of the symmetric-rate at some iteration ι ≥ 0. We

develop “Algorithm OP” to find the appropriate β and {am}
M
m=1 that maximize RCoF

sym .

As described in “Algorithm OP”, we find the appropriate β and A, alternately. The iterative

process in “Algorithm OP” terminates if either one of the following conditions holds: i) ∥β(ι)
−

β(ι−1)
∥ and ∣RCoF

sym[ι]−RCoF
sym[ι−1]∣ are smaller than prescribed small strictly positive constants ε1

and ε2, respectively — in this case, the optimized value of the symmetric-rate is RCoF
sym[ι] and is

obtained using β⋆
= β(ι) and A⋆

=A(ι) ii) rank(A(ι)
) <M— in this case, if ι = 1 the optimized
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value of the symmetric-rate is obtained using β⋆
= 0 and A⋆

= 0 otherwise β⋆
= β(ι−1) and

A⋆
=A(ι−1).

Algorithm OP Iterative algorithm to compute RCoF
sym as given by (2)

1: Initialization: set ι = 1 and β = β(0), where β(0) is a given initial value
2: Set β = β(ι−1) in (4), and solve the obtained problem as described in Section IV-2. Denote by A(ι) the found A

3: If rank(A(ι)) =M
4: Set A =A(ι) in (4), and solve the obtained problem using Algorithm OP-1 given below. Denote by β(ι) the found β

5: Increment the iteration index as ι = ι + 1, and go back to Step 2
6: Terminate if ∥β(ι) − β(ι−1)∥ ≤ ε1, ∣RCoF

sym[ι] −RCoF
sym[ι − 1]∣ ≤ ε2

7: Else
8: If ι = 1

9: Terminate and set β = 0 and A = 0

10: Else
11: Terminate and set β = β(ι−1) and A =A(ι−1)

12: End
13: End

We should note that by considering different initial values β(0) a higher transmission rate can

be obtained and the probability to get full rank linear combinations can be increased.

2) Integer Coefficients Optimization: In this section, we search for the integer coefficients

{am}
M
m=1 for a given β. The optimization problem (OP) can be equivalently written as

min
{am}Mm=1,∆1

∆1 (5a)

s. t. ∆1 ≥ aTmΩmam (5b)

∆1 ≥ 2−Ro (5c)

where ∆1 ∈ R is simultaneously a slack variable and the objective function, and Ωm = IM −

P (β○hm)(β○hm)T
N+P ∥β○hm∥2 ∈ RM×M .

The optimization problem (5) is a mixed integer quadratic programming (MIQP) problem [6]

[9] and can easily and efficiently be solved using branch and bound method [10].
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3) Precoding Allocation: In this section, we optimize the precoding vector β for given

{am}
M
m=1. Again, we can rewrite the optimization problem (OP), for m = 1, . . . ,M , as

min
β,∆2

∆2 (6a)

s. t. ∆2 ≥ ∥am∥
2
−

P ((β ○ hm)
Tam)

2

N + P ∥β ○ hm∥
2

(6b)

∆2 ≥ 2−Ro (6c)

−

√

Pum
P

≤ βum ≤

√

Pum
P

(6d)

where ∆2 ∈ R is simultaneously a slack variable and the objective function. The optimization

problem in (6) is non-linear and non-convex. This problem can be formulated as a complementary

geometric program (CGP) [6] [11] and can be solved easily and efficiently as described in

[6]. To solve a CGP problem, we need to transform it into a geometric program (GP). This

means that the variables in the optimization problem should be all positive, and the objective

function and the constraints should be posynomials. We define c = [cu1 , . . . cuM ]
T
∈ RM and

δ = [δu1 , . . . , δuM ]
T
∈ RM , such that cum >

√

Pum/P and δum = βum + cum for m = 1, . . . ,M .

It can easily be seen that the elements of δ are all strictly positive. Hence, the optimization

problem (6) can be written in the following form,

min
δ,∆2

∆2 (7a)

s. t.
fm(δ,∆2)

gm(δ,∆2)
≤ 1 (7b)

2−Ro

∆2

≤ 1 (7c)

−

√

Pum
P

+ cum ≤ δum ≤

√

Pum
P

+ cum , (7d)

where the constraints in (7b) correspond to the constraints in (6b), and fm(δ,∆2) and gm(δ,∆2)

are posynomial functions. It is easy to see that the constraints in (7b) are not posynomial since

a ratio of posynomial functions is not posynomial [11]. Therefore, we use Lemma 1 of [6]

to approximate the functions gm(δ,∆2) with monomials g̃m(δ,∆2) around some initial value.

We should note that the ratio between posynomial and monomial can be upper bounded by a

posynomial [11]. Thus, the optimization problem (7) is now a GP problem and can be solved

easily using an interior point approach. To improve the accuracy of the approximation, the found
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solution of the GP problem is used as an initial value to transform again the CGP into a new

GP problem. This process is repeated until convergence to a stationary point. The problem of

finding δ for given {am}
M
m=1 is described in “Algorithm OP-1”.

Algorithm OP-1 Precoding allocation for RCoF
sym as given by (2)

1: Set δ(0) to some initial value. Compute ∆
(0)
2 using δ(0) and set ι2 = 1

2: Approximate g(δ(ι2),∆(ι2)2 ) with g̃(δ(ι2),∆(ι2)2 ) around δ(ι2−1) and ∆
(ι2−1)
2 using Lemma 1 of [6]

3: Solve the resulting approximated GP problem using an interior point approach. Denote the found solutions as δ(ι2) and ∆
(ι2)
2

4: Increment the iteration index as ι2 = ι2 + 1 and go back to Step 2 using δ and ∆2 of step 3
5: Terminate if ∥δ(ι2) − δ(ι2−1)∥ ≤ ε1

V. NUMERICAL EXAMPLES

In this section, we provide some numerical examples where we measure the performance

of the coding strategy using symmetric outage rate. We compare our coding strategy with the

traditional strategies for M = 2. Also, we consider different algorithms and we compare them

with the proposed algorithm “Algorithm OP”. The symmetric outage rate is given by [4],

RCoF
Out = sup{R ∶ ρOut(R) ≤ ρ} (8)

where ρOut(R) is the outage probability and is given by

ρOut(R) = Pr(RCoF
sym < R). (9)

Throughout this section, we assume that the channel coefficients are modeled with independent

and randomly generated variables, each generated according to a zero-mean Gaussian distribution

with variance σ2
ui,rj

, for i, j = 1,2. Also, we set Pu1 = 20 dBW, Pu2 = 20 dBW, P = 20 dBW,

and ρ = 1/4.

Figures 2a and 2b show the symmetric outage rate obtained using the CoF approach under

different optimization algorithms: i) using “Algorithm OP”, i.e., RCoF
Out (Alg. OP), ii) using the

integer coefficients algorithm described in IV-2 with β = 1, i.e., RCoF
Out (Alg. in IV-2, β = 1), iii)

using the algorithm described in [6], i.e., RCoF
Out (Alg. in [6]), iv) using the integer coefficients

algorithm described in IV-2 but forcing relay m to compute an equation with amm ≠ 0, i.e.,

RCoF
Out (Alg. in [4]) v) using the algorithm described in [7] i.e., RCoF

Out (Alg. in [7]) as functions of
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Fig. 2: (a) Symmetric outage rates, Ro = 2 bits per channel use, σ2
u1,r1 = σ

2
u2,r1 = σ

2
u1,r2 = σ

2
u2,r2 = 0 dB. (b)

Symmetric outage rates, Ro = 7 bits per channel use, σ2
u1,r1 = σ

2
u2,r1 = σ

2
u1,r2 = σ

2
u2,r2 = 20 dB. (c) Probability of

rank failure, Ro = 2 bits per channel use, σ2
u1,r1 = σ

2
u2,r1 = σ

2
u1,r2 = σ

2
u2,r2 = 0 dB.

10 log(P /N). The figures also show the symmetric outage rates obtained using DF, CF and the

upper bound as given in [4].

For the example shown in Figure 2a, we observe that “Algorithm OP” achieves a symmetric

outage rate slightly less than what is obtained using the algorithm in [6]. Also, we observe

that “Algorithm OP” has a performance similar to that in [7] at low values of P /N , however

it has higher performance at mid and high values of P /N . Recall that, in [6] and [7], the

integer coefficient vectors are jointly computed among the relays. In these methods, each relay

finds a candidate set that contains several integer vectors. From those candidate sets, the relays

jointly select from each set an integer vector to construct a full rank matrix that maximizes the

transmission rate. In order to jointly select the integer coefficient vectors, the relays need either to

signal their candidate sets to each others or to transmit them to a central controller. This makes

those methods not practical for a large number of users and relays and makes the proposed

method more practical and efficient. Moreover, the complexity to select the independent integer

vectors from the candidate sets is O(TM) where T is the number of integer vectors in each

set. In contrast, in the proposed method, it is zero since each relay independently computes an

integer vector. Also, we observe that “Algorithm OP” outperforms the other described algorithms

and that CoF strategy, in this regime, has better performance than standard DF and CF as it has

been shown in [4].

Figure 2b depicts the same curves for other channel variances. In this case, we observe that
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both algorithms “Algorithm OP” and the one in [6] have the same performance. Also, we observe

that “Algorithm OP” significantly outperforms the algorithm in [7].

In Figure 2c, we observe that the probability that the linear combinations are not full rank is

quite small using “Algorithm OP” compared with the other algorithms. Hence, we notice that

precoding allocation can help to increase the transmission rate, to decrease the probability of

rank failure, and to reduce the complexity at the relays.

VI. CONCLUSION

In this paper, we consider a system where multiple users communicate with a destination with

the help of multiple half-duplex relays. The relays use the CoF strategy where each relay decodes

an integer-valued linear combination that relates the transmitted codewords and then forwards

it to the destination. Given these linear combinations, the destination may or may not recover

the transmitted messages since the linear combinations are not always full rank. To reduce the

probability of rank failure at the destination and to maximize the transmission rate, we consider

precoding allocation at the users. The analysis shows the advantage of the precoding technique

over other techniques and the advantage of CoF strategy over the traditional strategies.
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