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A CASE STUDY ON REGULARITY IN CELLULAR NETWORK

DEPLOYMENT

J.S. GOMEZ, A. VASSEUR, A. VERGNE, P. MARTINS, L. DECREUSEFOND,
AND WEI CHEN

Abstract. This paper aims to validate the β-Ginibre point process as a model

for the distribution of base station locations in a cellular network. The β-
Ginibre is a repulsive point process in which repulsion is controlled by the β

parameter. When β tends to zero, the point process converges in law towards
a Poisson point process. If β equals to one it becomes a Ginibre point process.
Simulations on real data collected in Paris (France) show that base station
locations can be fitted with a β-Ginibre point process. Moreover we prove that
their superposition tends to a Poisson point process as it can be seen from real
data. Qualitative interpretations on deployment strategies are derived from
the model fitting of the raw data.

1. Introduction

Statistical models of transmitters locations aim to provide tools to understand
real network deployment. For telecommunication companies, the a priori knowl-
edge of the distribution of the antenna locations helps to predict and manage the
costs of a network deployment. Such models also provide mathematical tractable
methods to estimate the coverage probability of a given network. These results
would also interest telecommunication regulators and public health authorities,
since electromagnetic exposure has become a worldwide issue.

The first model introduced in radio networks was the regular hexagonal deter-
ministic network. Although the regular lattice of cells gives an approximation of the
cellular concept, it fails to catch the proper reality of network deployment. It proves
also to be an optimistic bound in terms of interference estimation [1]. The random
nature of the parameters involved in defining a proper coverage strategy makes it
difficult to use a deterministic and regular model. Stochastic geometry ideas, espe-
cially about random point processes -i.e. Poisson Point Processes (PPP), Matérn
hard-core point processes, Ginibre Point Process (GPP) and β-Ginibre Point Pro-
cess (β-GPP)- were then widely explored in the wireless communication literature.
Pioneer works in this field were realized by Baccelli et al. on PPP [2]. Many results
were then derived, such as the coverage probability in respect of the SINR. Last
developments of PPP models also include modelling of heterogeneous (k-tier) net-
works [3]. However, positions of the base stations in a PPP deployed network are
uncorrelated with one another. Therefore clusters of points may occur. Mean inter-
site distance of such configurations is thus smaller than what happens in reality. As
a result, PPP models generate more interference than that of a real network. The
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articles of Andrews et al. [1] and Nakata et al. [4] show that the PPP provide with
the most pessimistic prediction of outage probability compared with other repulsive
models.

Spatial correlations between base stations locations exist, since they have to be
separated from one another to maximize coverage and minimize inter-site inter-
ferences. To take into account these effects, repulsive (or regular) models were
introduced in the literature. A simple approach is to transform a PPP into a repul-
sive point process by thinning. Such processes are called Matérn hard-core point
processes. Interferences for such deployed networks were investigated in [5] but
hard-core models proved to be difficult to manipulate since the outage probability
can not be analytically deduced. Soft-core processes then rose community’s in-
terest. Among them, GPP and β-GPP (two determinantal point processes) were
investigated in the wireless communication field. They were at first introduced
by Shirai et al. [6] in quantum physics to model fermion interactions. Works of
Miyoshi et al.[7] and Deng et al. [8] have derived coverage probability in respect of
the SINR for both GPP and β-GPP models.

In this paper, we show that base station distribution for an operator and for
a technology can be fitted with a β-GPP distribution in the Paris area. The dis-
tribution of all base stations of all operators can be fitted with a PPP. Our main
contribution lies in the theoretical justification of this phenomenon. We prove that
the superposition of different β-GPPs converges in distribution to a PPP process.
Finally we draw conclusions on the coverage-capacity trade-off made by different
operators. Qualitative results are derived from the inferred values of β and the
intensity λ. λ can give information on the dimensioning strategy adopted by the
operator, while β give insights on the coverage.

Other existing papers on antenna deployment models mainly consider the com-
putation of the SINR and coverage probability for a wide set of point processes. We
are instead interested in validating the β-GPP model and the PPP superposition
model with real data on a dense urban area. Such a case study is made possible
because French frequency regulator (ANFR) provides location in an open access
database [9].

In Section II, we define mathematically the β-GPP and introduce the conver-
gence in distribution theorem for a superposition of β-GPP. In Section III, we give
the method used to fit the β-GPP model with the actual data. A qualitative in-
terpretation of the deployment strategies is then realized from inferred β and λ

.

2. Theoretical Model

In this section, we recall the definition of the β-GPP. We also introduce the
theorem β-GPP convergence theorem.

2.1. Definitions. Let C denote the complex plane. Let Φ be a realisation of a
certain point process. Let x1, . . . , xk, be k-tuples of distinct pairwise elements of
C. Let R ⊆ C be a Borel set and f : Rn → R∗

+ be any Borel function.

Definition 1 (Correlation function). The k-th joint density function of a point
process is defined by:

E

∑

(x1,...xn)
xi 6=xj

f (x1, . . . , xk)

=

∫

Rn

f (x1, . . . , xk)ρ
(k)(x1, . . . , xk)dx1. . .dxk.
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Let β be a real number in ]0, 1], let λ, a strictly positive real number be the
intensity of a point process and c = λπ. The β-GPP is a determinantal point
process that can be defined by its correlation functions.

Definition 2 (β-Ginibre).

ρ(k) (x1, . . . , xk) = det (Kc,β (xi, xj) , 1 ≤ i, j ≤ k) ,

where Kc,β is a kernel such as ∀(x, y) ∈ C2:

Kc,β (x, y) =
c

π
e−

c
2β (|x|

2+|y|2)e
c
β
xȳ,

with the respect of the Lebesgue measure.

A β-GPP can also be obtained by thinning and rescaling a GPP. Each point
of the GPP is kept independently with probability β, then a rescaling of ratio√
β is applied in order to maintain the original intensity. If β = 1, the 1-GPP is

equal to the GPP. For β tending to zero, the thinning increases the randomness
of the process, and then the kernel Kc,β tends to a diagonal matrix. Correlation
between points disappears. The Laplace transform of a β-GPP is given for all f
by L(f) = det(I −

√
1− e−fKc,β

√
1− e−f ), where the determinant is the one of

Carleman-Fredholm. It is easy to see that the β-GPP Laplace transform converges
then to the one of a PPP when β goes to zero.

2.2. Properties of superposition of β-GPP. One of the main novelties in this
paper is the study of the superposition of multiple β-GPP. We give the key conver-
gence theorem for the β-GPP.
Let Φ1,Φ2, ..., be point processes in a metric space R. Let χ be the space of all
locally finite subsets (configurations) in R. We now introduce the β-GPP superpo-
sition convergence theorem.
For all n ∈ N

∗, let Φn be the superposition of (Φn,i)i∈[|1,n|] family of βn,i-GPP with

intensity λn,i=(nπ)
−1

ci and βn,i ∈]0, 1].

Theorem 1 (β-GPP superposition convergence theorem). Let us suppose that:

(i) the sequence (ci)i∈N∗ ⊂ R∗
+ is bounded,

(ii) lim
n→+∞

n−1
∑n

i=1 ci is finite and equal to c.

Then (Φn)n∈N∗ converges in distribution to a PPP Φ with intensity cπ−1.

Proof. This theorem is proven in Appendix A �

Hypotheses (i) and (ii) of Th.1 are quite restrictive because the intensities of
each β-GPP are dependent of n. However, in practice, we mainly work with finite
families of β-GPP. Therefore, we can choose the value of the (ci)i∈1...n such that
they match the real values of the intensity of each β-GPP.

3. Simulations

In this section we introduce the fitting method that is used to obtain the pa-
rameter β. We also present the results from the fitting of each deployment and
operator in Paris, France.

3.1. Summary statistic. In order to fit the real deployment to the β-GPP model,
we introduce the J function that characterize any point process. This function is
a summary statistic based on inter-point distances. General information about
summary statistics can be found in [10]. Let u be any location in the plane C, and
Φ = {xi}i∈N

be a realization of a β-GPP.
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Definition 3 (J-function of the β-GPP).

∀r ∈ R
∗
+ J(r) :=

1−G(r)

1− F (r)
,

= (1− β + βe−
c
β
r2)−1,

where G and F are respectively the contact distribution function and the nearest-
neighbor distance distribution function.

The J-function characterizes the repulsiveness or attractiveness of a point pro-
cess. If the J-function is bigger than one, the point process is repulsive, otherwise,
it is attractive. By definition of a PPP, J(r) ≡ 1 In the case of the β-GPP, the J-
function is always bigger than one on its definition domain. This confirms that the
β-GPP is a repulsive point process. It characterizes the β-GPP and its expression
is proved in [8].

−10000 −8000 −6000 −4000 −2000 0 2000 4000 6000 8000
−5000

0

5000

Figure 1. Example of data sample for one GSM operator. The
J-function is fitted on the points within the rectangular window.

3.2. Fitting method. Thanks to R language and the spatstat package [11], the
estimate of the J-function is derived from the raw data. Since we consider only
a finite set of antennas, edge-effect might appear on the J-function estimate. We
then have to keep a subset of the data to perform the estimation. Figure 1 gives the
window we considered for extracting data in Paris, France. It covers about 60% of
the city and its shape is chosen to match the geographical borders. The values of
the J-function estimate are computed for r ≤ 600 m. Above 600 m, the estimation
is not relevant due to the edge-effect. J is then directly fitted on the estimate and
the parameter β is deduced. An example of fitting is given in Figure 2. It is clear
that the point process formed by the base stations locations is repulsive and fits well
the theoretical model. Therefore, it outfits the PPP model, because the J-function
a PPP is equal to one for all r. In the next paragraph we present the results we
obtained on raw data.

3.3. Fitting results and interpretation. Locations of the base stations are pub-
licly available for the whole French territory and can be found online [9]. There
are four operators in France and most of them provide 2G to 4G coverage. For
each operator and each technology, numerical values of β and λ from the fitting are
given in Table 1.

Values of β and λ give some insights about the deployment strategy of each cel-
lular network operators, especially about the coverage-capacity trade-off. Orange’s
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Figure 2. Example of J-function fitting for Orange, SFR and
Bouygues on the 3G 2100 MHz band. As a comparison, J(r) = 1
for all r in the PPP case.

Table 1. Numerical values of β and λ per technology and operator

Orange SFR Bouygues Free

GSM 900
β 0.81 0.76 0.65 NA

λ 2.39 2.65 2.63 NA

GSM 1800
β 0.84 0.85 0.71 NA

λ 3.00 2.39 3.59 NA

UMTS 900
β NA 0.97 0.53 0.89

λ NA 1.92 2.44 1.05

UMTS 2100
β 1.04 0.65 0.82 0.89

λ 3.27 3.48 4.04 1.05

LTE 800
β 1.02 0.93 0.67 NA

λ 0.67 1.65 1.87 NA

LTE 1800
β NA NA 0.75 NA

λ NA NA 3.46 NA

LTE 2600
β 0.93 0.67 0.63 0.89

λ 2.80 2.76 2.46 1.05

high values of β and λ suggest that this operator deployed (as the historic, pre-
viously state-owned operator) a network that fulfilled an optimal coverage and an
optimal traffic capacity (densely deployed network). However, SFR and Bouygues
first deployed a network with a minimum of antennas (in order to abide by the cov-
erage requirement of the regulator) and then gradually increased traffic capacity
on hot-spots (by increasing locally the number of antennas). This involves adding
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more antennas on sites that are already covered, thus creating clusters and decreas-
ing the value of β and increasing the value of λ. The French telecommunication
regulator (ARCEP) published yearly reports [12] that suggest such evolution.

We deduce that French operators used two different deployment strategies. The
first strategy consists in fulfilling both coverage and optimal traffic capacity at
once. While the second strategy is to deploy a network that abides to the coverage
requirements in a first stage, then in a second stage to increase the number of
antennas on hot-spots in order to improve the traffic capacity.

Table 2. Numerical values of β and λ per operator and for the
superposition of all the sites

Orange SFR Bouygues Free Superposition

β 0.94 0.70 0.81 0.89 0.17

λ 3.48 3.70 4.23 1.05 10.28

Number of sites 185 197 225 56 547

When deploying their 3G or 4G networks, operators reused and shared some
existing 2G sites. Therefore, we consider that classifying the base station sites per
operator is more relevant than classifying them by technologies. Table 2 summaries
these results. As expected, previous conclusions still hold as values of β are stable
between the two tables. We also notice that Free, as a newcomer (2012), has a small
amount of traffic to deal with, and therefore has deployed less antennas than its
competitors. Data analysis also shows that the superposition of all sites is tending
to a PPP as β is equal to 0.17. Therefore the PPP model still holds as an indicator
of electromagnetic exposure of cellular networks.

4. Conclusion

In this paper, we successfully show that β-GPP is a realistic model for base
station distribution. The β parameter is inferred by using statistical tools on real
data. Qualitative results on network deployment are then derived. We also prove
theoretically that the superposition of multiple β-GPPs converges in distribution
to a PPP justifying observations made on real deployments. This will have greater
implications in modelling multi-tiers networks. We show that the values of λ and β

are characteristics of the coverage-capacity trade-off. Future works will investigate
the impact λ and β on the design of optimal deployment strategies.

Appendix A. Proof of Theorem 1

Let A be a compact subset in C. For a realization of a point process Φ, the
random variable Φ(A) is the number of points in the compact A.

Theorem 2. [Convergence in distribution theorem] For any A compact subset in
C, if the three following properties hold:

(i) lim
n→+∞

P(Φn(A) = 0) = P(Φ(A) = 0)

(ii) lim sup
n→+∞

P(Φn(A) ≤ 1) ≥ P(Φ(A) ≤ 1)

(iii) lim
t→+∞

lim sup
n→+∞

P(Φn(A) > t) = 0

Then: Φn
d−→ Φ.
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Th.1 is achieved if all conditions of Th.2 are satisfied.
Condition (iii). Thanks to Markov inequality, and since (E[Φn(A)])n∈N∗ is bounded,
(iii) holds.

Conditions (i) and (ii). For a Poisson point process, we know that:

P (Φ(A)=0)=e−|A|cπ−1

,

P (Φ(A)≤1)=e−|A|cπ−1(

1+|A|cπ−1
)

.

We have yet to calculate the left-hand side of both inequalities (i) and (ii). Let Kn,i

be the kernel of a βn,i-GPP. Proposition 3 of Goldman’s paper [13] states that:

P(Φn,i(A)=0)=1+
∑

p≥1

(−1)p

p

∫

Ap

det[Kn,i](v1, ..., vp)ℓ
p(dv),

P(Φn,i(A)=1)=P(Φn,i(A)=0)

∫

A

Rn,i(z)ℓ(dz),

where ℓ designates the Lebesgue measure and

Rn,i(z)=Kn,i(z, z)+
∑

j≥2

K
(j)
n,i(z, z).

By hypothesis of Th.1, (ci)i∈N∗ is bounded. We also know that ‖Kn,i‖∞ = ci(nπ)
−1.

We can then prove recursively for all p ≥ 1, there exists a M > 0 such that for all
i ∈ N∗,

0 ≤ det[Kn,i](v1, ..., vp) ≤ ‖Kn,i‖p∞ ≤
(

M

nπ

)p

.

Therefore there exists two bounded sequences (ǫn)n∈N∗ and (ǫ′n)n∈N∗ independent
of i and , such that:

P(Φn,i(A)=0) = 1− ci|A|
nπ

+n−2ǫn.,

P(Φn,i(A)=1) =
ci|A|
nπ

+n−2ǫ′n.

Hence,

P(Φn(A)=0)=eO(n−2)e−
∑n

i=1

ci|A|

nπ ,

P(Φn(A)=1)≥eo(
1

n
)e−

∑n
j=1

cj |A|

nπ

n
∑

i=1

ci|A|
nπ

+ o(1).

Therefore,

lim
n→∞

P(Φn(A)=0) = e−|A|cπ−1

,

lim sup
n→∞

P(Φn(A)=1) ≥ c|A|
π

e−|A|cπ−1

,

consequently (i) and (ii) hold. �
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