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Abstract-One-bit compressive sensing (CS) is known to be particularly suited for resource-constrained wireless sensor networks 

(WSNs). In this paper, we consider 1-bit CS over noisy WSNs subject to channel-induced bit flipping errors, and propose an 

amplitude-aided signal reconstruction scheme, by which (i) the representation points of local binary quantizers are designed to 

minimize the loss of data fidelity caused by local sensing noise, quantization, and bit sign flipping, and (ii) the fusion center adopts the 

conventional 
1 −� minimization method for sparse signal recovery using the decoded and de-mapped binary data. The representation 

points of binary quantizers are designed by minimizing the mean square error (MSE) of the net data mismatch, taking into account 

the distributions of the nonzero signal entries, local sensing noise, quantization error, and bit flipping; a simple closed-form solution is 

then obtained. Numerical simulations show that our method improves the estimation accuracy when SNR is low or the number of 

sensors is small, as compared to state-of-the-art 1-bit CS algorithms relying solely on the sign message for signal recovery. 

 

Index Terms: compressive sensing; quantization; wireless sensor networks. 

 

I. INTRODUCTION 
 

  Compressive sensing (CS) provides a new paradigm for sub-Nyquist signal processing capable of 

reducing the data acquisition and storage costs [1-2]. While many existing studies of CS assumed 

real-valued measurements, the needs of high-speed digital transmission and processing have stimulated 

the development of CS schemes using quantized measurements [3], in certain cases even with one-bit 

coarse quantization to ease hardware implementation, aka., the 1-bit CS [4-7]. Recently, integration of CS 

into the design of wireless sensor networks (WSNs) has received considerable attention [8-9]. The 1-bit 

CS is particularly attractive in this scenario, due to its capability of reducing the communication and 

computational costs of local sensors [10-11]. In practical WSNs, communication link errors caused by 

channel fading and noise are unavoidable. Hence, transmission of the one-bit message from each local 

node to the fusion center (FC) will be subject to random bit flipping. The design of sparse signal 

reconstruction algorithms for 1-bit CS by further taking into account the effect of bit flipping has been 

recently addressed in, e.g., [5-7]. 

 

  In this paper we study 1-bit CS over a noisy WSN, which employs the following data processing 

protocol: (i) each sensor observes a common K-sparse signal vector corrupted with noise, (ii) compresses 

its observation into a scalar, (iii) quantizes the compressed measurement into one bit, and (iv) transmits 

this binary information in parallel through a noisy communication link, modeled as a binary symmetric 
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channel (BSC), to the FC for global signal reconstruction. In contrast to all existing 1-bit CS methods 

using exclusively the sign information for signal reconstruction, we propose an amplitude-added sparse 

signal recovery scheme to combat the bit flipping caused by BSC. In our approach, the representation 

points of the local binary quantizers are designed by minimizing the mean square error (MSE) of the data 

mismatch at the FC upon bit decoding and magnitude de-mapping. Then, using the de-mapped binary data, 

conventional signal reconstruction algorithms based on real-valued measurements, such as the standard 

1� -minimization method [12], is employed at the FC for signal reconstruction. The adopted MSE metric 

takes into account the distributions of nonzero entries of the sparse signal, local sensing noise, 

quantization error, and the bit flipping effect. An analytic formula for the MSE is first derived. The 

optimal quantizer representation level is then obtained in closed-form, without resorting to intensive 

numerical optimization. Compared to current state-of-the-art schemes [5-7], the distinctive features of the 

proposed method can be summarized as follows. 

1. Existing 1-bit CS algorithms relied fully on the received sign patterns for signal reconstruction, 

ignoring the average signal amplitude information revealed by the representation level. By contrast, the 

proposed approach with MSE-optimal binary quantizer design can leverage the signal amplitude 

knowledge for performance enhancement, especially in the presence of severe bit flipping caused by 

large data transmission errors and measurement noise. 

2. Computer simulations show that the proposed method improves the reconstruction performance when 

the SNR is low or the total number of sensor nodes is small. 

 

II. SYSTEM MODEL AND BASIC ASSUMPTIONS 

 

  We consider a WSN, in which M sensor nodes cooperate with a FC for estimating a common K-sparse 

vector N∈s R , with support {1, , }N⊂ �T  such that K=T  and M N� . The received signal at 

the ith sensor node is 

                                  ,  1i i i M= + ≤ ≤x s v ,                          (2.1) 

 

where 2( , )i N v Nσv 0 I∼ N  is white Gaussian measurement noise. To conserve the energy and bandwidth 

resources, the raw sensor data ix  is not directly forwarded to the FC. Instead, each sensor first 

compresses its measurement ix  into a scalar as 

 

                             ( ), 1 ,i i i i iz i M= = + ≤ ≤x s vΦ Φ                        (2.2) 

 

in which 1
1[ ] N

i i iN
×= ∈�Φ Φ Φ R  is the unit-norm data compression vector with ij ∈Φ R  as the j-th 

entry. Afterwards, the compressed measurement iz  is quantized into a binary message 

                                
if  

if  

,   ;
= ( )=

,   ,

i i i

i i i
i i i

z
q z

z

α τ

β τ

 ≥ <
Q                          (2.3) 
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according to a binary quantization rule ( )i ⋅Q , with iτ  as the threshold and { , }i iα β  as the 

representation points. Each of the quantized messages iq , 1 ,i M≤ ≤  is encoded into one bit, and is 

then transmitted over M parallel channels to the FC. To account for the effects of fading and channel 

noise, each communication link is modeled as a BSC with cross-over probability ,e iP , 1 i M≤ ≤ . Let 

ˆ { , }i i iq α β∈  be the quantized data received at the FC (upon bit decoding and de-mapping) from the ith 

sensor node, 1 i M≤ ≤ ; due to imperfect decoding, the event that î iq q≠  occurs with a probability 

,e iP . Collecting îq 's received at the FC into a vector, we write 

 

                         11[ ]
T

T T T
MMq q  = = +  y s w� �� �

��������������	



Φ Φ

Φ

,                     (2.4) 

where M N×∈Φ R  is the system sensing matrix, and M∈w R  is the aggregate noise vector accounting 

for the local sensing noise, quantization error, and bit flipping. In this paper, we propose an 

amplitude-aided sparse signal reconstruction scheme using the de-mapped binary data y  given in (2.4). 

The following assumptions are made in the sequel. 

 

Assumption 1: The K nonzero entries of the sparse signal s are i.i.d. Gaussian random variables, i.e., 

2(0, )k ss σ∼ N  for all k ∈ T , and are independent with the local sensing noise iv 's.             □ 

Assumption 2: The sensing matrix Φ  is binary with entries { 1/ }ij NΦ ∈ ± .                  □ 

 

III. AMPLITUDE-AIDED ONE-BIT CS 

 

A. Proposed Approach 

 

  The idea behind the proposed scheme is to exploit the side information about the signal magnitude in 

addition to the 1-bit sign message. In the context of 1-bit CS with binary quantization employed at each 

sensor node, a natural approach is thus to judiciously design the binary quantizer { , , }i i iτ α β  so that the 

loss of data fidelity (caused by local sensing noise, signal quantization, and bit flipping) at the FC is kept 

to the minimum. Specifically, the proposed approach consists of the following two steps: 

� A design of the local binary quantizer parameters 1{ , , }i i i i Mτ α β ≤ ≤  by minimizing the MSE of 

the data mismatch 2{ }E w , where the expectation is taken with respect to the distributions of 

the nonzero signal entries, local sensing noise, quantization error, and bit flipping. 

� With the optimal quantizers deployed at local nodes, the FC performs the 1� -minimization 

algorithm [12] for sparse signal recovery
1
. 

 

1. To guarantee stable signal reconstruction using the 
1
� -minimization algorithm [12], a commonly-used sufficient condition is that the 

sensing matrix Φ  satisfies the restricted isometry property (RIP) of order 2K [12]. Notably, the RIP condition holds with an 

overwhelmingly large probability for binary sensing matrices with entries drawn from i.i.d. symmetric Bernoulli distribution [2]. 
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  A key step of the proposed approach is to design the MSE-optimal binary quantizer, as to be discussed 

in the next two subsections. 

 

 

B. MSE-Optimal Quantizer: Design Formulation 

 

  At the ith node, the input to the quantizer is ( )i i iz = +s vΦ , which is Gaussian random variable with 

mean { } ( { } { }) 0i i iE z E E= + =s vΦ  (recall both the signal s and noise iv  are zero mean). The 

variance of iz  is 

            

�
             

2

( )2

2
( ) ( ) ( )22 2 2

{ } {( )( ) } { } { }

{ } { } ,

aT T T T T T
i i i i i i i i i i i

b c dT T T Ts
s ij i i i i i i i i v
j

E z E E E

K
E E

N

σ

σ
σ σ σ

∈

= + + = +

= + = + = +∑

s v s v ss v v

v v v v




Φ Φ Φ Φ Φ Φ

Φ Φ Φ Φ Φ

T

      (3.1) 

where (a) follows since s and iv  are independent, (b) follows from Assumption 1, (c) is true since 

{ 1/ }ij NΦ ∈ ±  and K=T , and (d) holds by using 2{ }Ti i vE σ=v v I  and 
2

1i =Φ . With (3.1), it 

can be concluded that 2 2(0, )i vz σ σ+∼ N . Due to symmetry of the Gaussian density, we accordingly 

have 0iτ =  and i iβ α= − , thereby the quantization rule (2.3) simplified to 

                               
if  

if  

,   0;
= ( )=

,   0.

 i i

i i i
i i

z
q z

z

α

α

 ≥− <
Q                           (3.2) 

Henceforth, the design of the binary quantizer employed at the ith node amounts to the design of a single 

representation point iα ; without loss of generality, 0iα >  is assumed in the sequel. Hence, our purpose 

is to find  

                            2
1

0, 1
( , , ) argmin { }M

i i M
E

α
α α

> ≤ ≤
= w� ,                      (3.3) 

where the expectation takes into account the distributions of the signal entries, local sensing noise, 

quantization error, and bit flipping. 

 

C. MSE-Optimal Quantizer: Solution 

 

  To solve problem (3.3), we first derive an analytic formula for 2{ }E w . Let us write 

1[ ]TMw w=w � , where iw ∈ R , and then 

 

   

( ) 222

1 1

2 2

1

{ } { } { }

          { | 0}Pr{ 0} { | 0}Pr{ 0} ,

M Ma

i ii
i i

M

i i i i i ii i
i

E E w E q

E q E q

= =

=

= = −

 = − ≥ ≥ + − < <  

∑ ∑

∑

w s

s s s s s s

�

� �

Φ

Φ Φ Φ Φ Φ Φ

  (3.4) 

where (a) follows from (2.4). Notably, conditioned on 0iΦ ≥s  and since ˆ { }i iq α∈ ± , it can be directly 

deduced that 
2 2

i i iiq α− = −s s� Φ Φ  if sgn( ) sgn( )i iq=s �Φ , i.e., isΦ  and iq�  have the same sign, 

and 
2 2

i i iiq α− = +s s� Φ Φ  if sgn( ) sgn( )i iq≠s �Φ ; conditioned on 0i <sΦ , we instead have 
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2 2
i i iiq α− = +s s� Φ Φ  if sgn( ) sgn( )i iq=s �Φ , and 

2 2
i i iiq α− = −s s� Φ Φ  if sgn( ) sgn( )i iq≠s �Φ  

Hence, if we write  

 

     Pr{sgn( ) sgn( ) | 0}i i iiP q+ ≠ ≥s s�
 Φ Φ  and Pr{sgn( ) sgn( ) | 0}i i iiP q− ≠ <s s�
 Φ Φ ,    (3.5) 

it then follows 

             
2 2 2

{ | 0} (1 )i i i i i i i iiE q P Pα α
+ +− ≥ = − × − + + ×s s s s� Φ Φ Φ Φ           (3.6) 

and 

               
2 2 2

{ | 0} (1 )i i i i i i i iiE q P Pα α
− −− < = + × − + − ×s s s s� Φ Φ Φ Φ .          (3.7) 

 

From (3.4)~(3.7), a key step to find the formula of 2{ }E w  is thus to determine the conditional 

probabilities iP
+  and iP

− . This is done in the next lemma. 

Lemma 3.1: The following result holds: 

 

                          ( ), , +(1 2 ) / ,i i e i e i i vP P P P Q σ+ −= = − × sΦ                  (3.8) 

 

where ,e iP  is the cross-over probability of the ith BSC and ( )Q ⋅  is the standard Q-function [13].   □ 

[Proof]: See Appendix A.                                                             □ 

 

With the aid of Lemma 3.1, a closed-from formula for 2{ }E w  is given in the following theorem. 

 

Theorem 3.2: The mean square error of the mismatched term w can be expressed as 

 

              

2
2 2 2 2

, ,22
2 2

2 (1 2 ) 2 (1 2 )
{ } +

(1 ( / ) ) (1 ( / ) )

M
e i e i

i
i i v v

P P
E

σ σ
α σ

π σ σ π σ σ=

    − −    = −  −     + +     

∑w ,           (3.9) 

where 2σ  is defined in (3.1).                                                          □ 

[Proof]: See Appendix B.                                                              □ 

 

With (3.9), minimization of 2{ }E w  over iα 's can thus be done on a node-by-node basis, and the 

optimal solutions are immediately obtained as 

 

                              

2 2
,
2

2 (1 2 )

(1 ( / ) )

e i
i

v

Pσ
α

π σ σ

−
=

⋅ +
, 1 i M≤ ≤ .                  (3.10) 

The resultant minimal MSE is 

                             

2 2
,2
2

1

2 (1 2 )

(1 ( / ) )

M
e i

i v

P
MSE

σ
σ

π σ σ=

 −  = −   + 
∑ .                     (3.11) 
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Fig. 1. MSE of the proposed optimal representation level (3.10) and                 Fig. 2. NMSE of four signal reconstruction methods as a function of  

       the naive solution.                                                        the bit flipping probability (SNR=10 dB). 
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Fig. 3. NMSE of four signal reconstruction methods as a function of                Fig. 4. NMSE of four signal reconstruction methods as a function of  

      SNR ( =0.05eP ).                                                        the total number of sensors (SNR=10 dB and =0.05eP ). 

 

IV. RESULTS AND DISCUSSIONS 

 

  We use numerical simulations to illustrate the performance of the proposed method. For simplicity of 

illustration, we assume the homogeneous link condition, i.e., ,e i eP P= , for all 1 i M≤ ≤ ; the SNR of 

the local measurement is defined as 
22{ }/ { }iSNR E Es v
 . With 100M = , 1000N = , and 

10K = , Figure 1 first compares the proposed optimal representation level (3.10) with the naive solution 

obtained without considering the bit flipping effect, that is, the one obtained by setting 0eP =  in (3.10), 

leading to 
2

2

2

(1 ( / ) )
s

i

v s

K

N N K

σ
α

π σ σ
=

+
� . For both solutions, the empirical MSE corresponding to, 

respectively, 0SNR =  dB and 20  dB are plotted as a function of the cross-over probability eP ; for 

the proposed solution (3.10), the theoretical values of MSE in (3.11) are also included in the figure. We 

can see from the figure that (i) the proposed method outperforms the naive solution, and (ii) our analytic 

results (3.11) are in close agreement with the simulated outcome. To further illustrate the signal 

reconstruction performance, the following four sparse signal reconstruction algorithms are considered, 

namely, the conventional 1 −� minimization combined with the proposed optimal quantizer (3.10), the 

binary iterative hard thresholding (BIHT) algorithm [5], adaptive outlier pursuit (AOP) [6], and 

noise-adaptive renormalized fixed point iteration (NARFPI) [7]. The quality of signal recovery is assessed 
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by the normalized mean square error, defined to be 
2 2ˆ{ }/ { }NMSE E E−s s s
 , where ŝ  is the 

reconstructed sparse signal at the FC. For SNR=10 dB, Figure 2 compares the achieved NMSE  of all 

methods as a function of the cross-over probability eP , showing that the proposed method is quite robust 

against the sign flipping. With 0.05eP = , Figure 3 then plots the NMSE  as a function of SNR; as we 

can see, the proposed method improves the reconstruction performance in the low SNR regime. For 

0.05eP =  and SNR=10 dB, Figure 4 plots NMSE  as a function of M, the total number of sensors; our 

method is seen to yield the best performance when M is small. The above results confirm that the 

proposed amplitude-assisted scheme is attractive in a harsh sensing environment (with low SNR) or in a 

small-size network with reduced implementation cost. 

 

APPENDIX 

A. Proof of Lemma 3.1 

 

  Conditioned on fixed isΦ , we have 2+ ( , ),  1i i i i v i Mσ ≤ ≤s v s∼Φ Φ ΦN . We first focus on the case 

0i ≥sΦ , and consider the two events 

 

              1 { + 0 0} i i i i≥ ≥s v s
 Φ Φ ΦA  and 2 { + 0 0}i i i i< ≥s v s
 Φ Φ ΦA ,       (A.1) 

 

with probabilities ( )1Pr{ } /i vQ σΦ= − sA  and ( )2Pr{ } /i vQ σΦ= sA . Then  

  

1 2

( )

1 2

( )

1 2

=Pr{sgn( ) sgn( ) | 0}

   Pr{ { } 0} Pr{ {  = } 0}

   Pr{  0} Pr{{ } 0} Pr{  0} Pr{{ } 0}

   Pr{  0} Pr{ } Pr{  0} Pr{

i i i ii

i i i ii i

a

i i i i i ii i

b

i i ii i

P q

q q q q

q q q q

q q q

+ ≠ ≥

= ∩ ≠ ≥ + ∩ ≥

= ≥ × ≠ ≥ + ≥ × = ≥

= ≥ × ≠ + ≥ ×

s s

s s

s s s s

s s

�

� �

� �

� �

Φ Φ

Φ Φ

Φ Φ Φ Φ

Φ Φ

A A

A A

A A

( ) ( )

( ) ( )

( ) ( )

, ,

, ,

, , , ,

}

   / / (1 )

   1 / / (1 )

   (1 2 ) / (1 2 ) / ,

i

i v e i i v e i

i v e i i v e i

e i e i i v e i e i i v

q

Q P Q P

Q P Q P

P P Q P P Q

σ σ

σ σ

σ σ

=

= − × + × −

 = − × + × − 

= + − = + −

s s

s s

s s

Φ Φ

Φ Φ

Φ Φ

 (A.2) 

where (a) and (b) hold since the channel flipping effect is independent of the local sensing noise. iP
−  can 

be obtained in a similar way owing to the symmetric nature of the Gaussian density, and therefore the first 

equality in (3.8) holds. The proof is completed.                                          □ 

 

B. Proof of Theorem 3.2 

 

  We need the following lemma to prove (3.9). 

 

Lemma A.1: ( ) ( )
2 2

2 2 2 2

20

2 exp( /(2 ))
/ /(2 ) 1 /( )

2
v v

t
tQ t dt

σ
σ σ π σ σ σ

πσ

∞ −
× = − +∫ . 

[Proof]: 



 8

( ) ( )

( )

2 2 2 2
2

2 20 0

2 2 2 2
( ) 2 2

2 20
=0

2 2
( ) 2

2

2 exp( /(2 )) 2 exp( /(2 ))
/ / ( )

2 2

2 exp( /(2 )) 2 exp( /(2 ))
/ ( ) ( / )( )

2 2

2 exp( /(2 ))
( / ) ( )

2

v v

a

v v

t

b

v

t t
tQ t dt Q t d

t t
Q t d Q t

t
Q t

σ σ
σ σ σ

πσ πσ

σ σ
σ σ σ σ

πσ πσ

σ
σ σ

πσ

∞ ∞

∞
∞

 − − × = −   
 − −   = ⋅ − − −    
 −

= ⋅ − ⋅


∫ ∫

∫

( )

( )

2 2 2 2 2

2 20
=0

2 2 2 2 2

2 2 20

2 2
2 2 2 2 2

2 2 2 2 0

2 exp( /(2 )) ( ) exp( /(2 ))

2 2

1 1 2
=( ) ( ) exp ( ) / 2

2 2 2

( )1 2 2
= /(2 ) exp ( ) /2

22 2 ( )

v

vt

v

v

v
v

v v

t t
dt

t dt

t dt

σ σ σ

πσ πσ

σ σ σ σ
πσ πσ πσ

σ σπ
σ π σ σ σ

ππσ πσ σ σ

∞
∞

∞ − −

− −∞ − −
− −

 − ⋅ −  − × 

⋅ − ⋅ ⋅ − +

+
− ⋅ ⋅ ⋅ ⋅ ⋅ − +

+

∫

∫

∫

 

2 2 2 2 2

2 2 2 2 2 2 2 2 2

= /(2 ) /(2 ( ))

= /(2 ) /(2 ) /( )= /(2 ) (1 /( )),

v v

v v

σ π σ πσ σ σ

σ π σ π σ σ σ σ π σ σ σ

− −− ⋅ +

− ⋅ + ⋅ − +
 

where (a) is obtained by using integration by part and (b) holds due to the fact that 
2( / 2)1

( )
2

td
Q t e

dt π

−−
=  [13].                                                           □ 

[Proof of Theorem 3.2]: Using (3.4)~(3.7), we have 

 

          ( )

( )

22

2 2

2 2

{ } { }

          { 1 + 0} ( 0)

              + { + 1 + <0} ( <0).

i ii

i i i i i i i i

i i i i i i i i

E w E q

E P P P

E P P P

α α

α α

+ +

− −

= −

= − ⋅ − + ⋅ ≥ × ≥

⋅ − − ⋅ ×

s

s s s s

s s s s

� Φ

Φ Φ Φ Φ

Φ Φ Φ Φ

       (A.3) 

Our task is to determine the two conditional expectation terms in (A.3). To obtain the first term, we have 

 
2 2 2 2

2 2
( ) 2 2

20

2 2 2 2 2
2

2 20

{ (1 )+ 0} {( ) 2(1 2 ) 0}

2 exp( /(2 ))
2(1 2 )
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a
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σ
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πσ

σ σ
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πσ πσ

+ + +

∞ +

∞ +

= − ⋅ − + ⋅ ≥ = − − + ≥

− = − − × + ×  

− −
= + − − ×

∫

∫

s s s s s sΦ Φ Φ Φ Φ Φ
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0

2 2 2 2 2
( ) 2

, ,2 20 0

2 2
( ) 2 2

, , 20

2 2
,

2 exp( /(2 )) 2 exp( /(2 ))
2 1 2  +(1 2 ) /

2 2

2 exp( /(2 ))
2 1 2  +(1 2 ) /

2

2 (1 2 ) 1

i

b
i i i

i i i e i e i i v i i

c
i

i i e i e i i v i i

i i e i

t t t
dt P P Q t t dt

t
P P Q t t dt

P

σ σ
α α σ

πσ πσ

σ
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πσ

α σ α

∞

∞ ∞

∞

− − = + − − − × ×  

− = + − − − × ×  

= + − −

∫

∫ ∫

∫

( )
2 2

20

2 exp( /(2 ))
2 / ,                                     (A.4)

2

i
i v i i

t
Q t t dt

σ
σ

πσ

∞ − − × ∫

 

where (a) holds since 2(0, )i σΦ s ∼ N  and the density function of iΦ s  conditioned on 0iΦ ≥s  is 

given by 

2 2( /(2 ))

2

2
( 0)

2

i

i

t

i i

e
f t

σ

πσ
Φ

Φ

−

≥ =s s , (b) is obtained by invoking the definition of iP
+  in (3.8), and 

(c) follows from
2
 

2. The integral in (A.5) yields exactly the variance of a Gaussian random variable with distribution 
2
)(0, σN . 
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2 2 2 2 2 2

2

2 20

2 exp( /(2 )) exp( /(2 ))

2 2

i i i i
i i

t t t t
dt dt

σ σ
σ

πσ πσ

∞ ∞

−∞

− −
= =∫ ∫ .          (A.5) 

An explicit form of the remaining integral term in (A.4) can be obtained as 

            

( )

( )

( )

( )

2 2

20

2 2 2 2

2 20 0

2 2
2

20

( ) 2 2 2 2 2 2 2 2

2exp( /(2 ))
    1 2 /

2

2exp( /(2 )) 2 exp( /(2 ))
2 /

2 2

2exp( /(2 ))
2 / 2 /

2

2 / 2 /(2 ) 1 /( ) 2 / /(

i
i v i i

i i
i i i i v i

i
i i v i

a

v

a
Q t t dt

t t
t dt tQ t dt

t
tQ t dt

σ
σ

πσ

σ σ
σ

πσ πσ

σ
σ π σ

πσ

σ π σ π σ σ σ σ π σ σ

∞

∞ ∞

∞

− − × 

− −
= × − ×

−
= − ×

= − − + = ×

∫

∫ ∫

∫

2),vσ+

    (A.6) 

where (a) follows from Lemma A.1. With (A.4) and (A.6), it follows that 

 

                    

2 2

2 2 2 2 2 2
,

2 2 2 2 2 2
,

   { (1 )+ 0}

2 (1 2 ) 2 / /( )

= 2 (1 2 ) 2 / /( )+ .

i i i i i i i

i i e i v

i i e i v

E P P

P

P

α α

α σ α σ π σ σ σ

α α σ π σ σ σ σ

Φ Φ Φ
+ +− ⋅ − + ⋅ ≥

= + − − × × +

− − × × +

s s s

              (A.7) 

 

By going through essentially the same procedures, it can be shown that  

 

                     

2 2

2 2 2 2 2 2
,

  { (1 )+ 0}

2 (1 2 ) 2 / /( )+ .

i i i i i i i

i i e i v

E P P

P

α α

α α σ π σ σ σ σ

Φ Φ Φ
− −+ ⋅ − − ⋅ <

= − − × × +

s s s
             (A.8) 

Using (A.3), (A.7), (A.8), and since Pr{ 0} Pr{ 0} 1/2i i≥ = < =s sΦ Φ , we have 

                   

2
2 2 2 2

2 , ,2
2 2

2 (1 2 ) 2 (1 2 )
{ }= +

(1 ( / ) ) (1 ( / ) )

e i e i
i i

v v

P P
E w

σ σ
α σ

π σ σ π σ σ

 − −  −  −  ⋅ + + 
,            (A.9) 

and (3.9) follows immediately.                                                          □ 
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