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Abstract—In medium-size Massive MIMO systems, the min-
imum mean square error parallel interference cancellation
(MMSE-PIC) based Soft-Input Soft-Output (SISO) detector is
often used due to its relatively low complexity and good bit
error rate (BER) performance. The computational complexity
of MMSE-PIC for detecting a block of data is dominated by the
computation of a Gram matrix and a matrix inversion. They have
computational complexity of O(K?M) and O(K?), respectively,
where K is the number of uplink users with one transmit antenna
each and 1}V is the number of receive antennas at the base station.
In this letter, by using an L (typically L < 3) terms of Neumann
series expansion to approximate the matrix inversion, we reduce
the fotal computational complexity to O(LK M). Compared with
alternative algorithms which focus on reducing the complexity of
the matrix inversion only, the proposed method can also avoid
calculating the Gram matrix explicitly and thus significantly
reducing the fotal complexity.

Index Terms—Low complexity, Massive MIMO, Neumann
series expansion, iterative detection, MMSE.

I. INTRODUCTION

N recent years, Massive MIMO which typically employs

a magnitude of more antennas at the base station than in
user terminals has attracted great interest from wireless com-
munication research community [1]. It has been shown that
with Massive MIMO, the throughput and spectral efficiency
of wireless systems can be greatly improved [2]. When the
number of receive antennas at the base station is large and
much larger than the number of total transmit antennas in user
terminals, a simple detection algorithm such as a matched filter
can achieve very good performance, as with the assumption of
i.1.d. entries for channel matrix H, the channel vectors become
orthogonal to each other and H"H converges to a scaled
identity matrix. But for practical medium-size Massive MIMO,
matched filter based detection algorithm suffers performance
loss [3]. Therefore, alternative linear detection algorithms
such as the minimum mean square error parallel interference
cancellation (MMSE-PIC) algorithm [4] are often employed
due to their relatively low complexity and good bit error rate
(BER) performance. However, the MMSE-PIC still requires
complexity of O(K?) for calculating a matrix inversion and
O(K?M) for calculating the Gram matrix, where K is the
number of transmit antennas and M is the number of receive
antennas.

To reduce the complexity, [5] and [6] employed Neumann
series expansion to approximate the matrix inversion by a
matrix polynomial. Then in [3] the authors proposed to use
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the same method to perform 3GPP-LTE uplink signal detection
and proved the convergence of the Neumann series expansion.
Different from using Neumann series expansion, in [7] an
iterative method based on successive overrelaxation (SOR) is
employed to calculate the product of the inversion of a matrix
and a vector, which can converge to the exact solution. These
work can successfully reduce the complexity of computing
matrix inversion from O(K?) to O(K?). But they all require
the pre-computed Gram matrix as an input. In Massive MIMO
with M > K, the Gram matrix computation involves compu-
tational complexity of O(K2M), which is much higher than
the O(K3) complexity of matrix inversion .

In this letter, based on the MMSE detection algorithm [8],
we exploit Neumann series expansion to reduce the fotal com-
plexity of MMSE-PIC for Massive MIMO. With the proposed
method, computational complexity is reduced by avoiding
direct matrix inversion and replacing the matrix-matrix mul-
tiplication of Gram matrix with matrix-vector multiplications.
Specifically, we propose to employ an L (typically L < 3)
terms Neumann series expansion for calculating the means of
data symbols to be detected, and a first order approximation
for calculating the variances and thus reducing the complexity
from O(K2M + K3) to O(LK M) with marginal performance
loss when L = 3 for MIMO size of K x M = 16 x 128. We
also investigate the application of the proposed algorithm in
an iterative detection and decoding (IDD) system, where the
symbol detector and the channel decoder work iteratively. We
found that with one iteration between the decoder and the
detector, the proposed approximation algorithm with L = 3
can achieve the same performance as the exact MMSE-PIC
algorithm.

The remainder of this letter is organized as follows. Section
IT describes the turbo-MIMO system model. Then in Section
III, we propose to use Neumann series expansion to perform
MMSE detection without computing the Gram matrix. Simu-
lation results are shown in Section IV and Section V concludes
this letter.

The notations used in this letter are as follows. Lower and
upper case letters denote scalars. Bold lower and upper case
letters represent column vectors and matrices, respectively.

The superscripts “T” and “H” denote the transpose and
conjugate transpose, respectively.

II. SYSTEM MODEL

Consider a multiuser Massive MIMO system with M
receive antennas at the base station and K single-antenna
user terminals. Let x = [z, %9,...,2x|" denote the trans-



mit vector comprising the symbols transmitted simultane-
ously by all users in one channel use where z, € A =
{a1,a,..., e }(JA] Q) denotes transmitted symbol
from user n, then each z, corresponds to a length-) sub-
sequence of ¢ denoted by ¢, = [cn1,Cn,2," - ',cn_,Q]T. Let
H = [hy,hs, ... hg| denote the channel gain matrix, where

n = [P1n, han, .-, hara]T is the channel gain vector from
user n to the base station, and h;,, denotes the channel gain
from the n-th user to the j-th receive antenna at the base
station. Assuming rich scattering, adequate spatial separation
between the base station antenna elements and perfect user
power control, hj,,Vj are assumed to be ii.d. complex
Gaussian distributed with zero mean and variance one. Thus
a length-M observation vector y at the base station can be
written as

y=Hx+w (1)

where w denotes a length-M circularly symmetric additive
white Gaussian noise (AWGN) vector with zero-mean and
covariance of oL

The task of the Soft-In Soft-Out (SISO) detector is to
compute the extrinsic log-likelihood ratio (LLR) for each code
bit ¢,, 4, which is the input to the decoder and can be expressed
as [8]
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where L?(cy, 4) is the output extrinsic LLR of the decoder,
&y, € AY(AL) represents constellations whose g-th bit is 0(1)
and P(x,) is the a priori probability of x, which can be
calculated from L?(cy, q)-

III. MMSE DETECTION BASED ON NEUMANN SERIES
EXPANSION

We employ the method proposed in [8] to perform MIMO
MMSE detection. With this algorithm, it is easy to reformulate
the matrix to be inverted with the size of K x K which is
preferable for Massive MIMO applications with M > K.
The core part of this algorithm is to compute the a posteriori
mean mP and variance VP of x by

VP = (V714 1HHH) (3)

m° =m + %VP(HHy — H"Hm), 4)
where m and V are the a priori mean and variance of x,
respectively, and they can be calculated from the feedback of
the decoder'. Then the extrinsic mean m¢ and variance v
of the n-th element of x (which are used to generate soft-out
LLR) can be calculated by

At the beginning of the IDD, there is no feedback from the decoder.
Assuming that the constellation of the modulation is with zero mean and
normalized with unit power and data streams from different transmit antennas
are statistically independent, we have m be a zero vector and V be the identity
matrix Ix with size K x K.

Algorithm 1 Reduced Complexity Neumann Series expansion
based MMSE detection
Input: y, H, L?

Output L° > extrinsic LLR value for every bit
Calculate a priori mean m and variance V from L?

—-
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4: Calculate a posteriori mean mP
5. D=diag(V"'+ 5H"H)

6 vo=D"'(H"y - H"Hm)
7 So = Vo
8 for i =1to L do
9 vi=v,_1—D"

: 1(V71 + %HHH)Vifl
10: Si =Si—1 TV;

11: end for
12: mP =m + %SL

13: Approximate the diagonal elements of VP

14: vP =d, > d, is the (n,n)-th element of D!
15: Calculate extrmszc mean m;, and variance v,

16: v, = (— — ) 1

7w = ()
18: Calculate extrinsic LLR L°
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where v, v¥ are the (n, n)-th elements of matrix V and VP,
respectively, and m,, mP are the n-th elements of vector m
and mP, respectively. It is easy to see that (3) and (4) require
a computational complexity of O(K?M) for calculating H'H
and O(K?) for calculating the matrix inverse.

A. Neumann Series Expansion

The convergence of Neumann series expansion for detection
has been proved in [3]. It has been shown in [3] that, for
large p = M/K, the Gram matrix G = H"H tends to be
diagonally dominant, which enables the convergence of the
Neumann series expansion.

Let us decompose the regularized Gram matrix A = V! +
£ G to A =D +E, where D is the main diagonal of A. As
V is a diagonal matrix, the complexity of computing D is the
same as computing the diagonal elements of G. We can then
approximate A~ in the Neumann series as
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Using A™! of (7) to replace VP and plugging it into the
representation of mP of (4), it can be seen that only matrix-
vector multiplications are needed for calculating mP and the
calculation of the Gram matrix G itself is avoided. But we
should note that in (5) and (6) the diagonal elements of VP
are also required to compute the extrinsic mean and variance.
To reduce the complexity, we propose to use the first order
approximation (L = 0) of (7) for computing the diagonal
elements of VP (i.e. VP &~ D).

From (7), it is obvious that the multiplication of A landa
vector v can be computed by L loops. The proposed MIMO
MMSE detection algorithm with Neumann series expansion is
summarized in Algorithm 1. We note that when L = 0, the
proposed algorithm coincides with the matched filter detector
as mP = %DleHy (Note that we assume m is a zero vector
at the beginning of IDD).

B. Computational Complexity Comparison

We focus on the number of real-valued multiplications
needed and only count quadratic or beyond terms. For the
real-valued system model, the matrix size of H is 2K x 2M,
y is a length-2M vector and m is a length-2K vector. Note
that using the symmetric property of matrix G and VP can
reduce the complexity by a half. Table I is a summary of
complexity comparison between MMSE, the proposed algo-
rithm, Neumann series expansion based algorithm in [5] and
SOR based algorithm in [7]. In the table, the term 4K 2M
corresponds to the computing of Gram matrix G. Note that
for SOR based algorithm in [7], the number of iterations L
may be smaller than that of Neumann series expansion.

TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON

Algorithm Number of multiplications
Exact MMSE [8] 8K? + 4K3 + 4(K? + K)M
Proposed (16 + 8L)KM

Neumann series based [5]
SOR based [7]

4K?M +8(L — 2)K3
AK2M + 4L,K?

C. Discussion

In contrast to [5], [6], and [3], which also use the Neumann
series expansion to approximate matrix inversion, the proposed
methods avoid direct matrix inversion and replace the matrix-
matrix multiplication by matrix-vector multiplications, which
result in considerable saving in computations.

The method proposed in [7], after optimizing a parameter
by off-line exhaustive searching, can converge faster than
Neumann series expansion. But it requires each element of
matrix G as its input, which means that H'H has to be
computed explicitly, thus it cannot reduce the total complexity
significantly.

IV. SIMULATION RESULTS

We consider a Rayleigh block fading random channel where
H does not change over a codeword. During simulations, we
assume that perfect channel information is available in the
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Fig. 1. BER performance comparison for exact MMSE, proposed and SOR
based [7] with MIMO size of K x M = 16 x 128

detection module. A rate-1/2, regular (3,6) low-density parity-
check (LDPC) code with codeword length of 2000 bits is
employed as the channel code and the maximum number of
iterations of the decoder is 25. The constellation of 64-QAM
with Gray mapping is used. We constrain the total transmitter
power to one, and set the noise variance at each receive
antenna to o2. Then the average received signal-to-noise ratio
(SNR) at each receive antenna is given by 1/02. For each
SNR value, we simulate at least 100000 codewords. In the
simulations, clipping is applied to both the soft-output and the
soft-input of the detector. The soft-in clipping threshold? for
the a priori LLR is 42, and soft-output module constrains the
output LLR range to [—50, 50].

Fig. 1 shows the BER performance comparison between
the exact MMSE detection [8], the proposed algorithm and
the SOR based algorithm [7]. The MIMO size is K x M =
16 x 128. It is easy to see that the performance of the matched
filter (with legend Proposed (L=0)) is poor. At the same time,
with a larger L the approximation is more accurate and when
L = 3 the proposed algorithm can approach the performance
of the exact algorithm within 0.3dB. It can also be seen that
an extra IDD iteration (with legend Proposed (L=3) IDD)
achieves slightly better performance than the exact MMSE-
PIC algorithm without IDD.

To evaluate the performance loss caused by the first order
approximation of VP, we use (7) to explicitly compute the
matrix inversion and assign the diagonal elements to vE (as
in [5]) and the performances are shown in Fig. 1 with legends
ending with Var. It is obvious that the proposed approximation
to variance only leads to a small performance penalty.

2This clipping threshold can also help resolve the numerical stability issue
of Line 16 and Line 17 of Algorithm 1 when the a priori variance vy, is
close to zero.



V. CONCLUSION

In this letter, we have proposed to use Neumann series
expansion to reduce the complexity of the MMSE-PIC al-
gorithm for Massive MIMO applications with M > K.
Firstly, an L terms Neumann series was employed to avoid
computing the matrix inversion by replacing it with a cascade
of matrix-vector multiplications. Then, a first-order approxi-
mation was employed to compute the diagonal elements of the
a posteriori variance matrix for calculating LLR, which helps
to avoid computing the Gram matrix explicitly. Simulation
results showed that with a small L the proposed approximation
methods lead to marginal performance loss compared with
the exact implementation, but with considerable complexity
saving.
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