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Robust Transceiver Design for Full Duplex
Multi-user MIMO Systems

Ali Cagatay Cirik, Member, IEEE, Sudip Biswas, Student Member, IEEE, Satyanarayana Vuppala, and
Tharmalingam Ratnarajah, Senior Member, IEEE

Abstract—We consider a weighted sum-rate maximization
problem for a multi-user multiple-input multiple-output (MIMO)
cellular system where a full-duplex (FD) base-station (BS) serves
multiple half-duplex (HD) uplink (UL) and downlink (DL) users
simultaneously while taking the imperfect channel knowledge into
consideration. By exploiting the relationship between weighted
sum-rate and weighted minimum-mean-squared-error problems,
joint design of transceiver matrices can be obtained through an
iterative convergent algorithm. Simulation results confirmed the
importance of accurate channel estimation in FD systems.

Keywords—Full-duplex, imperfect CSI, MIMO, multi-user.

I. INTRODUCTION

Amongst the emerging technologies for next-generation
wireless networks, full-duplex (FD) communication is con-
sidered as a promising technique to potentially double the
speed of wireless systems, since it enables available spectral
resources to be fully utilized in time and frequency [1].

FD multi-user systems, where a FD capable base-station
(BS) communicates with half-duplex (HD) uplink (UL) and
downlink (DL) users at the same time slot over the same
frequency band, have been investigated in [2]-[6]. The authors
in [2]-[6] assume that perfect channel-state-information (CSI)
is available at the transmitters, which is practically impossible
due to the inaccurate channel estimation. Therefore, robust
transceiver designs that take into account imperfect channel
knowledge are of interest, which have not been reported (to
the best of our knowledge) so far for FD cellular systems.

In this work, we propose a robust precoder scheme for the
FD multiple-input multiple-output (MIMO) multi-user system
to maximize the weighted sum-rate of the network subject
to power constraints at the BS and UL users under norm-
bounded channel estimation errors. Similar to [7], we adopt
an iterative approach to solve this non-convex optimization
problem which is proven to converge, wherein a convex sub-
problem is solved at each step. Numerical results are presented
to show the importance of channel estimation in FD systems.

Notation: Matrices and vectors are denoted as bold capital
and lowercase letters, respectively. (·)T is the transpose, and
(·)H is the conjugate transpose. IN and 0N⇥M are the N⇥N

identity and N⇥M zero matrix, respectively; tr(·) is the trace;
|.| is the determinant; vec(·) stacks the elements of a matrix
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to one long column vector. ⌦ denotes the Kronecker product.
kXkF and kxk2 denote the Frobenius norm of matrix X and
the Euclidean norm of vector x, respectively.

II. SYSTEM MODEL

We consider a multi-user MIMO system, in which a BS
operating in FD mode serves K UL and J DL HD users
simultaneously. The BS is equipped with M0 and N0 transmit
and receive antennas, respectively. The number of antennas
at the k-th UL and the j-th DL user are denoted by Mk

and Nj , respectively. HUL
k 2 CN0⇥Mk and HDL

j 2 CNj⇥M0

represent the k-th UL and the j-th DL channel, respectively.
H0 2 CN0⇥M0 is the self-interference channel between the
transmitter and receiver antennas of BS. HDU

jk 2 CNj⇥Mk

denotes the co-channel interference (CCI) channel from the
k-th UL user to the j-th DL user.

The source symbols sUL
k 2 CdUL

k and sDL
j 2 CdDL

j for the
k-th UL and the j-th DL user, respectively are assumed to be
independent and identically distributed (i.i.d.) with unit power.
Denoting the precoders for the data streams of the k-th UL
and j-th DL user as VUL

k =

h

vUL
k,1 , . . . ,v

UL
k,dUL

k

i

2 CMk⇥dUL
k ,

and VDL
j =

h

vDL
j,1 , . . . ,vDL

j,dDL
j

i

2 CM0⇥dDL
j , respectively, the

signal received by the BS and the j-th DL user can be written,
respectively, as

y0 =

K
X

k=1

HUL
k VUL

k sUL
k +H0

J
X

j=1

VDL
j sDL

j + n0, (1)

yDL
j = HDL

j

J
X

j=1

VDL
j sDL

j +

K
X

k=1

HDU
jk VUL

k sUL
k + nDL

j ,(2)

where n0 ⇠ CN �

0,�2
n0
IN0

�

and nDL
j ⇠ CN

⇣

0,�2
nj
INj

⌘

denote the additive white Gaussian noise vector at the the BS
and the j-th DL user, respectively.

The received signals are processed by linear decoders,
denoted as UUL

k =

h

uUL
k,1 , . . . ,u

UL
k,dUL

k

i

2 CN0⇥dUL
k , and

UDL
j =

h

uDL
j,1 , . . . ,u

DL
j,dDL

j

i

2 CNj⇥dDL
j by the BS and the

j-th DL user, respectively. Therefore, the estimate of data
streams of the k-th UL and the j-th DL user are given as
ˆsUL
k =

�

UUL
k

�H
y0 and ˆsDL

j =

�

UDL
j

�H
yDL
j , respectively.

Using these estimates, the signal-to-interference-plus-noise ra-
tio (SINR) values of the m-th stream of the k-th user in the



2162-2337 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LWC.2016.2536607, IEEE
Wireless Communications Letters

2

channel X, X 2 {UL,DL} can be written as

�

X
k,m =

�

�

�

�

⇣

uX
k,m

⌘H

HX
k vX

k,m

�

�

�

�

2

⇣

uX
k,m

⌘H

⌃X
k uX

k,m +

PdX
k

n6=m

�

�

�

�

⇣

uX
k,m

⌘H

HX
k vX

k,n

�

�

�

�

2 ,

where ⌃UL
k denotes the covariance matrix of the interference-

plus-noise terms at the k-th UL user given as1

⌃UL
k =

K
X

j 6=k

HUL
j VUL

j

�

VUL
j

�H �
HUL

j

�H

+

J
X

j=1

H0V
DL
j

�

VDL
j

�H
HH

0 + �

2
n0
IN0 . (3)

The WSR optimization problem can be formulated as:

max

V

UL,UUL

V

DL,UDL

K
X

k=1

w

UL
k

dUL
k
X

m=1

log

�

1 + �

UL
k,m

�

+

J
X

j=1

w

DL
j

dDL
j
X

m=1

log

�

1 + �

DL
j,m

�

(4)

s.t.
dUL
k
X

m=1

�

vUL
k,m

�H
vUL
k,m  Pk, k 2 SUL

, (5)

J
X

j=1

dDL
j
X

m=1

�

vDL
j,m

�H
vDL
j,m  P0, (6)

where w

UL
k and w

DL
j are the weights of the k-th UL and the

j-th DL user, respectively, and VX
=

n

vX
k,m : 8(k,m)

o

and

UX
=

n

UX
k,m : 8(k,m)

o

, X 2 {UL,DL}. The constraints
Pk and P0 are the transmit power constraints at the k-th UL
user and at the BS, respectively. We use SUL and SDL to
represent the set of K UL and J DL channels, respectively.

III. JOINT BEAMFORMING DESIGN

We will first simplify the notations similar to [3] by com-
bining UL and DL channels. Denoting

Hij =

8

>

>

<

>

>

:

HUL
j , i 2 SUL

, j 2 SUL
,

H0, i 2 SUL
, j 2 SDL

,

HDU
ij , i 2 SDL

, j 2 SUL
,

HDL
i , i 2 SDL

, j 2 SDL
,

ni =

⇢

n0, i 2 SUL
,

nDL
i , i 2 SDL

,

˜

Ni

⇣

˜

Mi

⌘

=

⇢

N0 (Mi) , i 2 SUL
,

Ni (M0) , i 2 SDL
,

1The covariance matrix of the aggregate interference-plus-noise terms of the
j-th DL user, ⌃DL

j can be written similarly, i.e., by changing HUL
j , VUL

j

and H0 with HDL
j , VDL

i , i 6= j and HDU
jk , k = 1, . . . ,K, respectively.

and referring to VX
i , UX

i , �X
i,m, ⌃X

i , dXi , X 2 {UL,DL} as
Vi, Ui, �i,m, ⌃i, di, the SINR of the m-th stream in the i-th
link, i 2 S , SUL

SSDL can be written as

�i,m =

�

�uH
i,mHiivi,m

�

�

2

uH
i,m

0

@⌃i +

di
X

n6=m

Hiivi,nv
H
i,nH

H
ii

1

A

| {z }

⌃i,m

ui,m

, (7)

where ⌃i =

P

j2S,j 6=i HijVjV
H
j HH

ij + �

2
ni
IÑi

. Using the
simplified notations, the optimization problem (4)-(6) can be
rewritten as

max

vi,m,ui,m

i2S

X

i2S
wi

di
X

m=1

log2 (1 + �i,m) (8)

s.t.
di
X

m=1

vH
i,mvi,m  Pi, i 2 SUL

, (9)

X

i2SDL

di
X

m=1

vH
i,mvi,m  P0. (10)

The following result adopted from [8, Theorem 1] and used
in [5], [6] allows us to express (4)-(6) in terms of only linear
precoders.

Proposition 1: For any Vi that is a solution of (11)-(13),
there is a solution of (4)-(6) that share the same objective and
constraint values, and thus (4)-(6) and (11)-(13) are equivalent.
In particular, vi,m can be obtained by taking the m-th column
of ˜Vi = ViD, where D⇤DH is the eigen-decomposition of
VH

i HH
ii⌃

�1
i HiiVi, and ui,m can be obtained from ui,m =

⌃�1
i,mHiivi,m, where ⌃i,m is defined in (7).

max

V

X

i2S
wi log

�

�Idi +VH
i HH

ii⌃
�1
i HiiVi

�

� (11)

s.t. tr
�

VH
i Vi

  Pi, i 2 SUL
, (12)

X

i2SDL

tr
�

VH
i Vi

  P0, (13)

where V = {Vi : i 2 S}. Note that Proposition 1 states that
decoupled capacity composed of linear transmit and receive
beamforming vectors in (8) is fully equivalent to the mutual
information in (11), which only involves the linear precoders
as optimization variables. Based on Proposition 1, we can
solve the sum-rate maximization problem (8)-(10) by solving
the problem (11)-(13) and then construct linear precoders and
receive beamforming vectors in (8) from the resulting solution.
A. Imperfect CSI Model

The CSI for all channels is assumed to be imperfectly known
at the BS, and based on the imperfect CSI knowledge, the BS
computes the optimum transceiver matrices in a centralized
manner, and then distributes them to the users via control links.
The imperfect CSI is modeled using a deterministic norm-
bounded error model [7] is expressed as

Hij =

n

˜Hij +�ij : k�ijkF  ⌧ij

o

, (14)
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where ˜Hij and �ij denote the estimated CSI and the channel
error matrix with uncertainty bound ⌧ij , respectively.

With the imperfect CSI, the objective function of the opti-
mization problem (11)-(13) is replaced with

max

V

min

k�ijkF⌧ij

X

i2S
wi log

�

�Idi +VH
i HH

ii⌃
�1
i HiiVi

�

�

. (15)

By using the well-known relationship between the weighted
sum-rate and weighted minimum mean-squared-error (MSE)
problems [9], we transform the robust weighted sum-rate
problem in (15) into an equivalent robust weighted MSE
problem, which is expressed as

max

V

min

k�ijkF⌧ij
max

W,U

X

i2S
wi(�tr {WiEi}+ log |Wi|+ di)(16)

where U (W) = {Ui (Wi) : i 2 S}, Wi 2 Cdi⇥di is a
weight matrix, and Ei is the MSE matrix of the i-th link
defined as

Ei =
�

UH
i HiiVi � Idi

� �

UH
i HiiVi � Idi

�H
+UH

i ⌃iUi.

Since the formulation in (16) is intractable, we look at the
lower bound of the inner min-max problem by interchanging
the min-max terms, and express the problem as

max

V,W,U
min

k�ijkF⌧ij

X

i2S
wi (�tr {WiEi}+ log |Wi|+ di) .(17)

To simplify the problem further, we write tr {WiEi} as

tr {WiEi}
(a)
=

X

j2S
tr
n

Wi

�

UH
i HijVj � �ijIdi

� �

UH
i HijVj � �ijIdi

�H
o

+ �

2
ni

tr
�

WiU
H
i Ui

 

(b)
=

X

j2S

�

�

�

BH
i

⇣

UH
i

⇣

˜Hij +�ij

⌘

Vj � �ijIdi

⌘

�

�

�

2

F
+ �

2
ni

kUiBik2F
(c)
=

X

j2S

�

�

�

vec

⇣

BH
i

⇣

UH
i
˜HijVj � �ijIdi

⌘⌘

| {z }

dij

+

�

VT
j ⌦ �BH

i UH
i

��

| {z }

Dij

vec (�ij)

�

�

�

2

2
+ �

2
ni

kUiBik2F , (18)

where (a) is obtained by plugging ⌃i in (7) and using �ij

as the Kronecker delta function; (b) is obtained by using the
equality tr

�

AHA
 

= kAk2F and writing Wi = BiB
H
i ; and

(c) is obtained by using the identities kAk2F = kvec (A)k22
and vec(ABC) =

�

CT ⌦A
�

vec (B). Using (18), the inner
minimization problem in (17) can be rewritten as

min

k�ijkF⌧ij

X

i2S
wi

0

@�
X

j2S
kdij +Dijvec (�ij)k22

� �

2
ni

kUiBik2F + 2 log |Bi|+ di

⌘

.(19)

Using epigraph form and introducing slack variable �ij , the
problem (19) can be written as

max

�

X

i2S
wi

0

@�
X

j2S
�ij � �

2
ni

kUiBik2F + 2 log |Bi|+ di

1

A (20)

s.t. �kdij +Dijvec (�ij)k22  �ij , k�ijkF  ⌧ij , 8 (i, j) ,
where � = {�ij : 8 (i, j)}. Using Schur complement lemma,
the constraint in (20) is expressed in linear matrix inequalities
(LMI) form:


�ij dH
ij

dij Ididj

�

+



0 vec (�ij)
H
DH

ij

Dijvec (�ij) 0didj⇥didj

�

⌫ 0.(21)

To further simplify (21), we use the following lemma:
Lemma 1 ([10]): Given matrices P, Q, A with A = AH ,

the semi-infinite LMI of the form of

A ⌫ PHXQ+QHXHP, 8X : kXkF  ⇢,

holds if and only if 9✏ � 0 such that


A� ✏QHQ �⇢PH

�⇢P ✏I

�

⌫ 0. (22)

By choosing

A =



�ij dH
ij

dij Ididj

�

, P =

h

0ÑiM̃j⇥1, DH
ij

i

, (23)

X = vec (�ij) , Q =

⇥�1, 01⇥didj

⇤

, (24)

we can apply Lemma 1 to (21), and the resulting overall
optimization problem is formulated as

max

V,B,U,�,✏

X

i2S
wi

0

@�
X

j2S
�ij � �

2
ni

kUiBik2F

+ log

�

�BiB
H
i

�

�

+ di

�

(25)

s.t.

2

4

�ij � ✏ij dH
ij 01⇥ÑiM̃j

dij Ididj �⌧ijDij

0ÑiM̃j⇥1 �⌧ijD
H
ij ✏ijIÑiM̃j

3

5 ⌫ 0, 8 (i, j) ,(26)

kvec (Vi)k22  Pi, i 2 SUL
, (27)

X

i2SDL

kvec (Vi)k22  P0, ✏ij � 0, 8 (i, j) , (28)

where ✏ = {✏ij : 8 (i, j)}, and B = {Bi : i 2 S}. Although
the problem in (25)-(28) is non-convex, it becomes a convex
function of each optimization variable when the other two are
fixed. Therefore we can apply the coordinate ascend method
to update the transceiver matrices iteratively. In particular,
when V and U are fixed, B can be solved using MAX-
DET algorithm [11], when B and U (B and V) are fixed,
V (U) can be computed by solving the resulting Semidefinite
programming (SDP) problem. Since the alternating iterative
updates lead to a monotonic increase of the objective function
in (25), and the fact that it is bounded above guarantees the
convergence of the proposed algorithm to a stationary point.
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TABLE I. COMPLEXITY PARAMETERS

Number of variables (n) Dimension of blocks (al)
V

P
i2S 2M̃idi + 2|S|2 al = didj + ÑiM̃j + 1, (i, j) 2 S,

al = Mid
UL
i + 1, i 2 SUL,

al = M0
P

j2SDL dDL
j + 1.

Ui 2Ñidi + 2|S| al = didj + ÑiM̃j + 1, (i, j) 2 S.

Bi 2d2
i + 2|S| al = didj + ÑiM̃j + 1, (i, j) 2 S.

B. Computational Complexity
Since the proposed algorithm solves a SDP problem in each

step (SDP is a special case of MAX-DET [11]), we focus on
the complexity analysis of a standard SDP problem:

min

x2Rn
cTx s.t. A0 +

n
X

i=1

xiAi ⌫ 0, kxk2  R, (29)

where Ai denotes the symmetric block-diagonal matrices with
L diagonal blocks of size al ⇥ al, l = 1, . . . , L. The number
of elementary arithmetic operations necessary for solving this
problem is upper-bounded by [12]

O (1)

 

1 +

L
X

l=1

al

!1/2

n

 

n

2
+ n

L
X

l=1

a

2
l +

L
X

l=1

a

3
l

!

. (30)

For example, in computing Vi, the number of diagonal
blocks L is equal to |S|2 +

�

�SUL
�

�

+ 1. For the |S|2 LMI
constraints in (26), the dimension of blocks are al = didj +

˜

Ni
˜

Mj + 1, (i, j) 2 S . For the UL power constraint, the
dimension of the blocks are al = Mid

UL
i + 1, i 2 SUL.

For the BS power constraint, the dimension of the block
is al = M0

P

j2SDL d

DL
j + 1. The unknown variables to

be determined are of size n =

P

i2S 2

˜

Midi + 2|S|2. The
analysis of the other subproblems can be carried out in a
similar manner. Then, the complexity parameters for solving
the problem (25)-(28) using SDP method are given in Table I.

IV. SIMULATION RESULTS

In this section, we compare the proposed FD setup with the
equivalent HD system under the 3GPP LTE specifications for
small cell deployments, which is considered to be especially
suitable for deployment of FD technology due to low transmit
powers, short transmission distances and low mobility [2].
A single hexagonal cell having a BS in the center with
randomly distributed UL and DL users is simulated. The
parameters for the system model and the path-loss model
for each link are adopted from [13, Table II]. The elements
of the nominal small-scale fading channels, except the self-
interference channel, are randomly generated according to
zero-mean, unit-variance, i.i.d. Gaussian distributions. For
the nominal self-interference channel, we adopt the model
in [1], in which the self-interference channel is distributed

as ˜H0 ⇠ CN
✓

q

�2
SIKR

1+KR

ˆH0,
�2
SI

1+KR
IN0 ⌦ IM0

◆

, where KR

is the Rician factor, ˆH0 is a deterministic matrix, and �

2
SI

is introduced to parametrize the capability of a certain self-
interference cancellation design. The uncertainty sizes are
related to the quality of channels, i.e., ⌧ij = sk ˜HijkF , s 2
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Fig. 1. Comparison between FD and HD systems with respect to s.

[0, 1). We apply the following values as our system parameters:
Mk = Nj = 2, M0 = N0 = 2, K = J = 2, KR = 1 and ˆH0

to be the matrix of all ones for all experiments. The resulting
system performance is averaged over 100 channel realizations.

It can be seen from Fig. 1 that as the size of the uncertainty
region increases, the FD system suffers more, and the gap
between FD and HD systems decreases. This degradation in
performance of the FD system is explained as follows. Since
there are more interference channels (self-interference and
CCI) in FD systems, as the uncertainty level of the channels
increases, the system performance of the FD system degrades
more. This indicates that the channel estimation is a critical
factor for successful deployment of FD systems.
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