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How to Diagonalize a MIMO Channel with
Arbitrary Transmit Covariance?
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Abstract—Multiple-input multiple-output (MIMO) or multi-
antenna communication is a key technique to achieve high
spectral efficiency in wireless systems. For the point-to-point
MIMO channel, it is a well-known result that the channel
singular value decomposition (SVD) based linear precodingand
decoding achieves the channel capacity, which also diagonalizes
the MIMO channel into parallel single-input single-output (SISO)
sub-channels for independent encoding and decoding. However,
in multi-user MIMO systems, the optimal transmit covariance
of each MIMO link is generally not its channel SVD based as a
result of the control and balance of the co-channel interference
among users. Thus, it remains unknown whether the linear
precoding/decoding strategy is still able to achieve the capacity
of each MIMO link and yet diagonalize its MIMO channel, with
a given set of optimal transmit covariance of all users. Thisletter
solves this open problem by providing a closed-form capacity-
achieving linear precoder/decoder design that diagonalizes a
MIMO channel with arbitrary transmit covariance. Numerica l
examples are also provided to validate the proposed solution in
various multi-user MIMO systems.

I. I NTRODUCTION
Multi-antenna or so-called multiple-input multiple-output

(MIMO) technique has received consistently significant at-
tention in both single-user and multi-user wireless commu-
nications to achieve enormous spatial multiplexing and/or
diversity gains (see, e.g., [1] – [4]). When the channel is
perfectly known at both the transmitter and receiver and under
the point-to-point single-user setup, it is a well-known result
that the MIMO channel singular value decomposition (SVD)
based linear precoding and decoding achieves the capacity [5].
Moreover, the capacity-achieving SVD-based linear precoder
and decoder diagonalizes the MIMO channel into parallel
single-input single-output (SISO) sub-channels for indepen-
dent encoding and decoding, which makes spatial multiplexing
practically implementable with low transceiver complexity. In
[6], a uniform channel decomposition (UCD) based linear
precoding is proposed to decompose the MIMO channel into
parallel sub-channels with equal single-to-noise ratio (SNR)
to apply the same modulation scheme in practice. This linear
precoder design also achieves the MIMO channel capacity;
however, unlike the SVD-based design, the receiver of UCD
needs to apply the non-linear minimum mean-squared-error
(MMSE) based decoding with successive interference cancel-
lation (SIC) [6]. On the other hand, for the case when the
channel is not known at the transmitter, the Vertical Bell Labs

Manuscript received February 5, 2016, revised March 26, 2016, accepted
April 22, 2016. The associate editor coordinating the review of this letter and
approving it for publication was Dr. Saif Khan Mohammed.

L. Liu is with the Department of Electrical and Computer Engineering,
University of Toronto (e-mail:lianguot.liu@utoronto.ca).

R. Zhang is with the Department of Electrical and Computer Engineering,
National University of Singapore (e-mail:elezhang@nus.edu.sg).

Layered Space-Time (V-BLAST) architecture is proposed in
[7], which applies the isotropic transmission without precoding
and the non-linear MMSE receiver with SIC. Interestingly, it is
shown in [8] that the V-BLAST receiver is a special case of the
generalized decision feedback equalizer (GDFE) for generic
MIMO systems. However, like the UCD-based transmission,
the non-linear (instead of linear) receiver is necessary to
achieve the MIMO channel capacity with V-BLAST.

This letter extends the study of linear transceiver design for
achieving the MIMO channel capacity with perfect channel
knowledge by addressing the following question: given an ar-
bitrary transmit covariance in a point-to-point MIMO channel,
is there always a linear precoder and decoder solution that not
only achieves the channel capacity but also diagonalizes the
MIMO channel for parallel SISO processing? This is mainly
motivated by multi-user MIMO communication systems with
the co-channel interference among the users. In these systems,
the optimal transmit covariance of each user’s MIMO link
for achieving the system’s maximum throughput such as
weighted sum-rate of all users depends on the user’s direct
MIMO channel as well as all other users’ direct and cross-
link MIMO channels (see, e.g., [9] – [12]), which is thus not
its direct MIMO channel SVD based in general and cannot
diagonalize the direct MIMO channel. This letter solves this
problem by providing a closed-form capacity-achieving linear
precoder/decoder design that diagonalizes a MIMO channel
with arbitrary transmit covariance. Moreover, rich numerical
examples are provided to validate the proposed solution in
various multi-user MIMO systems.

Notation: I and 0 denote an identity matrix and an all-
zero matrix, respectively, with appropriate dimensions. For
a square matrixS, S−1 and det(S) denote its inverse (if
S is full-rank) and determinant, respectively;S � 0 means
thatS is positive semi-definite. For a matrixM of arbitrary
size,MH andMT denote the conjugate transpose and trans-
pose ofM , respectively;rank(M ) denotes the rank ofM .
diag(x1, · · · , xK) denotes a diagonal matrix with diagonal
elements given byx1, · · · , xK . The distribution of a circularly
symmetric complex Gaussian (CSCG) random vector with
meanx and covariance matrixΣ is denoted byCN (x,Σ);
and∼ stands for “distributed as”.Cx×y denotes the space of
x × y complex matrices.‖x‖ denotes the Euclidean norm of
a complex vectorx. min(a, b) denotes the minimum of two
real numbersa andb. E[·] denotes the statistical expectation.

II. SYSTEM MODEL

Consider a point-to-point MIMO channel consisting of one
transmitter equipped withM > 1 antennas and one receiver
with N > 1 antennas. We assume the MIMO channel is
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perfectly known at both the transmitter and receiver. The
baseband transmitted signal is given as

x = V s, (1)

where s = [s1, · · · , sD]T ∼ CN (0, I) denotes the
information-bearing signals via spatial multiplexing over D ≤
min(M,N) independent data streams, andV ∈ CM×D

denotes the linear precoder applied at the transmitter. The
baseband received signal is then given as

ỹ = H̃x+ z̃ = H̃V s+ z̃, (2)

where H̃ ∈ CN×M denotes the MIMO channel, and̃z =
[z̃1, · · · , z̃N ]T ∼ CN (0,Sz) denotes the noise at the multi-
antenna receiver with the covariance matrixSz , E[z̃z̃H ].
Without loss of generality, we assumeD ≤ rank(H̃). Note
that z̃ is in general not spatially white since it may include the
co-channel interference (assumed to be Gaussian distributed)
from other transmitters in multi-user communication setups
(see Section V for examples). At the receiver, without loss of
optimality, a noise-whitening filter can be applied to obtain

y = S
−

1

2

z ỹ = HV s+ z, (3)

whereH = S
−

1

2

z H̃ ∈ CN×M is the effective MIMO channel
and z = S

−
1

2

z z̃ ∈ CN×N with z ∼ CN (0, I) denotes the
effective Gaussian noise.

First, we consider the case of linear receiver. In this case,
the received signal in (3) is multiplied by a linear decoding
matrix UH ∈ CD×N , i.e.,

ŷ = UHy = UHHV s+UHz. (4)

Let ŷ , [ŷ1, · · · , ŷD]T . A pair of linear precoder and linear
decoder is called “diagonalizing” the MIMO channelH if
UHHV in (4) is a diagonal matrix. As a result, the MIMO
channel in (4) is decomposed intoD non-interfering parallel
SISO sub-channels given by

ŷd = uH
d Hvdsd + ẑd, d = 1, · · · , D, (5)

where ud and vd denote thedth columns ofU and V ,
respectively, and̂zd = uH

d z ∼ CN (0, ‖ud‖2). The SNR for
decoding the information insd is thus given by

γd =
|uH

d Hvd|2

‖ud‖2
, d = 1, · · · , D. (6)

As a result, the achievable sum-rate in bits/sec/Hz (bps/Hz)
over all D sub-channels with a given pair of linear precoder
V and linear decoderUH is

R =

D
∑

d=1

log2(1 + γd) =

D
∑

d=1

log2

(

1 +
|uH

d Hvd|2

‖ud‖2

)

. (7)

An illustration of the above linear precoding/decoding scheme
that diagonalizes the MIMO channel is given in Fig. 1.

Next, we consider the capacity of the MIMO channel where
the covariance matrix of the transmit signal is constrainedto
be a givenSx , E[xxH ] � 0. GivenSx, the capacity of the
point-to-point MIMO channel given in (3) in bps/Hz is [5]

C(Sx) = log2 det
(

I +HSxH
H
)

. (8)

Fig. 1. Illustration of the linear transceiver architecture that diagonalizes
MIMO channels.

In general, for an arbitrary transmit covarianceSx � 0, the
corresponding linear precoderV obtained directly via the
eigenvalue value decomposition (EVD) ofSx, i.e., Sx =
V V H (with V given in (12)), and a linear decoderUH

which jointly diagonalize the MIMO channelH is capacity-
suboptimal, i.e.,R ≤ C(Sx). However, there is a special
case whenR = C(Sx) if the linear precoderV is designed
based on the SVD of the MIMO channelH. Specifically, let
DH = rank(H) and express the truncated SVD ofH as
H = UHΛHV H

H , whereUH ∈ CN×DH with UH
HUH = I,

V H ∈ CM×DH with V H
HV H = I, andΛH is aDH -by-DH

positive diagonal matrix. Let

V = V HP
1

2 , (9)

UH = UH
H , (10)

where P is a DH -by-DH positive diagonal matrix. Then,
it can be easily verified that the pair of linear precoderV

and linear decoderUH given in (9) and (10) diagonalize
the MIMO channelH, which is referred to as the channel
SVD based linear precoder/decoder design. Furthermore, if
the water-filling power allocation is applied to designP , it is
known that the resulting transmit covariance,

Sx = V HPV H
H , (11)

achieves the capacity of the MIMO channel, i.e.,R = C(Sx)
[5].

However, if the transmit covarianceSx is not in the form of
(11), the channel SVD based linear precoding/decoding cannot
be applied, as shown in the following example. Define the
EVD of Sx asSx = UxΛxU

H
x , whereUx ∈ CM×D with

UH
x Ux = I, andΛx is a D-by-D positive diagonal matrix.

Then, given anySx � 0, consider the linear precoder designed
based on the EVD ofSx as

V = S
1

2

x = UxΛ
1

2

x . (12)

In order to diagonalize the MIMO channel, the receiver applies
a linear decoderUH such thatUHHV is diagonal. One
possible choice ofUH is the zero-forcing (ZF) receiver:

UH = ((HV )HHV )−1(HV )H . (13)

Next, we present a numerical example to compare the achiev-
able rate with the above linear precoder/decoder to the channel
capacity. We considerM = N = 2, and

H =

[

0.8147 0.1270
0.9058 0.9134

]

, Sx =

[

0.2896 −0.5654
−0.5654 1.8275

]

.

With the linear precoder given in (12) and the linear ZF
receiver given in (13) for this MIMO channel, we have

V =

[

−0.4423 0.3066
1.3481 0.1006

]

, U =

[

−1.2832 2.8846
0.9116 0.6576

]

.
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It can be shown that with the above channel-diagonalizing
linear precoder and decoder, the achievable rate given in (7)
is R = 0.6452 bps/Hz, while the capacity of this channel with
the givenSx can be computed from (8) asC(Sx) = 1.0103
bps/Hz. Evidently, we haveR < C(Sx) in this example.
Notice that with the above precoder, the channel capacity
C(Sx) needs to be achieved with non-linear MMSE decoder
with SIC [8].

III. PROBLEM FORMULATION

In this letter, for an arbitrary transmit covariance matrix
Sx � 0, we aim to find a pair of linear precoderV and
decoderUH that diagonalizes the MIMO channel and yet
achieves the channel capacity with the givenSx, i.e., they
need to satisfy the following three conditions:

D
∑

d=1

log2

(

1 +
|uH

d Hvd|2

‖ud‖2

)

= log2 det
(

I +HSxH
H
)

,

(14)

UHHV = diag(uH
1 Hv1, · · · ,u

H
DHvD), (15)

V V H = Sx. (16)

In the above, (14) is the capacity-achieving condition that
ensuresR = C(Sx), with R and C(Sx) given in (7) and
(8), respectively; (15) is the channel diagonalization condition;
while (16) is the transmit covariance condition.

IV. OPTIMAL SOLUTION

In this section, we show that given any transmit covariance
Sx � 0, there always exists a linear precoder/decoder design
that can diagonalize the MIMO channel and also achieve the
channel capacity. Specifically, the following theorem presents
a closed-form precoder/decoder solution that satisfies condi-
tions in (14) – (16) simultaneously.

Theorem 4.1: Given any transmit covarianceSx � 0 and

S
1

2

x (see (12)), withD = rank(S
1

2

x ) = rank(HS
1

2

x ),1 let the

truncated SVD ofΦ = HS
1

2

x be given by

Φ = HS
1

2

x = UΦΛΦV
H
Φ , (17)

whereUΦ ∈ CN×D with UH
ΦUΦ = I, V Φ ∈ CD×D with

V H
ΦV Φ = V ΦV

H
Φ = I, and ΛΦ = diag(φ1, · · · , φD),

with φd > 0, d = 1, · · · , D. Then, the following linear
precoder/decoder design satisfies conditions (14) – (16):

V = S
1

2

xV Φ, (18)

UH = UH
Φ . (19)

Proof: For convenience, we first verify the channel diag-
onalization condition given in (15). With the linear precoder
and decoder given in (18) and (19), respectively, from (17) we
have

UHHV = UH
ΦHS

1

2

xV Φ = ΛΦ = diag(φ1, · · · , φD). (20)

1This holds without loss of generality since ifrank(Sx) > rank(HS

1

2
x ),

we can always construct a new transmit covarianceS̄x with rank(S̄x) =

rank(HS̄

1

2
x ) which achieves the same capacity of the MIMO channelH

with the givenSx.

Next, consider the capacity-achieving condition given in
(14). Since forU given in (19), we have‖ud‖ = 1, ∀d, and
from (20), we haveuH

d Hvd = φd > 0, ∀d, it follows that

R =

D
∑

d=1

log2

(

1 +
|uH

d Hvd|2

‖ud‖2

)

=

D
∑

d=1

log2(1 + φ2
d)

(a)
= log2 det(I +Λ

2
Φ)

(b)
= log2 det(I +UΦΛΦV

H
ΦV ΦΛΦU

H
Φ )

(c)
= log2 det(I +HSxH

H) = C(Sx), (21)

where (a) is due toΛΦ = diag(φ1, · · · , φD), (b) is due to
V H

ΦV Φ = UH
ΦUΦ = I and the fact thatlog2 det(I+AB) =

log2 det(I +BA), and(c) is due to (17).
Last, consider the transmit covariance condition given in

(16). With V given in (18) andV ΦV
H
Φ = I, it follows that

V V H = S
1

2

xV ΦV
H
Φ (S

1

2

x )
H = Sx. (22)

Theorem 4.1 is thus proved.
Remark 4.1: It is worth noting that if the transmit covari-

ance is given as (11), then we haveUΦ = UH andV Φ = I

such thatV = S
1

2

x = V HP
1

2 . As a result, the linear precoding
and decoding solution given in (18) and (19) becomes that
based on the channel SVD as given in (9) and (10).

Theorem 4.1 is of practical significance in multi-user MIMO
channels, when the optimal transmit covariance of each user
is not given as (11). Specifically, we can first derive the
optimal transmit covariance solutions for all users, and then
with the obtained optimal transmit covariance of each user
apply (18) and (19) to find the corresponding optimal linear
precoder/decoder that achieves the channel capacity and also
diagonalizes the MIMO channel of each user. Consider the
same example given at the end of Section II. From (18) and
(19), we obtain a new pair of channel-diagonalizing linear
precoder and decoder as

V =

[

−0.2925 0.4517
1.2851 −0.4195

]

, U =

[

−0.0824 0.9966
0.9966 0.0825

]

,

and the achievable rate given in (7) is obtained asR = 1.0103
bps/Hz. Thus, we haveR = C(Sx) for the given MIMO
channel and transmit covariance.

V. NUMERICAL RESULTS

In this section, we provide numerical examples to verify the
effectiveness of the proposed design under different multi-user
MIMO setups. Due to space limitations, we present the results
only for the MIMO interference channel (IC) [9] and MIMO
cognitive radio (CR) channel [10], while the verification also
holds for other multi-user MIMO systems, such as the MIMO
multiple-access channel (MAC) [11] and MIMO broadcast
channel (BC) [12]. In the following, we consider two-user
systems where each user is equipped with two antennas, and
the transmit power constraint for each user is1 dB. Moreover,
we assume that the covariance of the background noise at each
receiver isI. We consider the real-valued channels for the ease
of illustration.
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Example 1: MIMO IC. In this example, we consider a two-
user MIMO IC. LetH̃j,k denote the channel from transmitter
k to receiverj, j, k = 1, 2, with the following realization:

H̃1,1=

[

2.0108 0.3083
0.0256 −0.9383

]

, H̃2,1=

[

0.4270−0.5780
0.1946 0.0199

]

,

H̃1,2=

[

−0.2253 −0.1253
0.0546 −0.0950

]

, H̃2,2=

[

1.6742 0.5301
0.1250 −0.9521

]

.

For the above MIMO IC, we consider the problem of max-
imizing the two users’ sum-rate as considered in [9], by
treating the interference as additive noise at each receiver. In
general, this problem is non-convex and thus difficult to solve
optimally. Thus, we apply the weighted sum mean-squared-
error minimization (WMMSE) algorithm proposed in [9] to
obtain a pair of suboptimal linear precoders for user1 and
user2:

Ṽ 1 =

[

2.4376 −0.6131
1.4874 1.2125

]

, Ṽ 2 =

[

1.9083 −1.0758
1.0682 2.0150

]

.

The channel capacities of users 1 and 2 with the corresponding
transmit covariance are6.0141 bps/Hz and5.3520 bps/Hz,
respectively. However, it can be shown that with the ZF
receiver given in (13) to diagonalize the effective channel
Hk,k = S

−
1

2

zk H̃k,k, whereSzk = H̃k,jṼ jṼ
H

j H̃
H

k,j +I with
j 6= k denotes the covariance matrix of the interference plus
noise at receiverk, k = 1, 2, the achievable rate of each user is
strictly less than its capacity. Instead, with the above precoders,
to achieve each user’s capacity, the non-linear MMSE receiver
with SIC needs to be applied [8].

With Theorem 4.1, we can construct the following linear
precoder and decoder for user1:

V 1 =

[

−2.4841 0.3836
−1.3681 −1.3456

]

, U1 =

[

−0.8449 0.2119
0.2368 0.9408

]

.

With this new design, it can be shown thatV 1V
H
1 =

Ṽ 1Ṽ
H

1 , i.e., with the same transmit covariance. Moreover,
UH

1 H1,1V 1 is a diagonal matrix, i.e., the MIMO channel
is diagonalized. Then, by decoding each data stream inde-
pendently over the two parallel sub-channels, the achievable
sum-rate of user 1 is6.0141 bps/Hz, which is the same as
its channel capacity. Similar result also applies to user2, the
details of which are omitted for brevity.

Example 2: MIMO CR. Next, we consider a MIMO CR
network consisting of one secondary user and one primary
user under spectrum sharing. The channels from the secondary
user transmitter to its receiver and the primary user receiver
are denoted byH̃ and G̃, respectively. For convenience, we
set H̃ = H̃1,1 and G̃ = H̃2,1, whereH̃1,1 and H̃2,1 are
given in Example 1. We assume there is no interference from
the primary transmitter to the secondary receiver. With this
channel setup, we maximize the capacity of the secondary
link subject to the interference temperature (IT) constraint at
the primary receiver as considered in [10]. The IT constraint
is set such that the total received power from the secondary
transmitter at the two antennas of the primary receiver needs
to be no larger than 2. This problem is convex, and thus
can be efficiently solved by CVX [13]. The optimal transmit
covariance for the secondary user is given as

S∗

x =

[

5.7228 1.4217
1.4217 4.2772

]

.

With this transmit covariance, the capacity of the secondary
user is6.7893 bps/Hz. It can be shown that the eigenvectors
of S∗

x are different from the right-singular vectors of̃G. As
a result, the channel SVD based linear precoding/decoding
design given in (9) and (10) cannot be applied to diagonalize
the secondary MIMO channel and achieve the capacity.

With Theorem 4.1, a new pair of linear precoder and
decoder for the secondary link is obtained as

V =

[

−2.3544 0.4238
−0.9358 −1.8443

]

, U =

[

−0.9870 0.1607
0.1607 0.9870

]

.

With this new design, it can be shown thatV V H = S∗

x.
Moreover,UHH̃V is a diagonal matrix, and the achievable
rate of the secondary user is6.7893 bps/Hz, which is the same
as its channel capacity.

VI. CONCLUSION

This letter studied the practical “channel-diagonalizing”
linear precoding/decoding design to achieve the capacity of
the point-to-point MIMO channel given an arbitrary transmit
covariance when the channel is perfectly known at the trans-
mitter and receiver. We proposed a closed-form solution for
this problem and verified its effectiveness in various multi-
user MIMO systems. This result was shown to be particularly
useful for diagonalizing the MIMO channel and yet achieving
the capacity in multi-user MIMO systems when the optimal
transmit covariance of each user is not channel SVD based as
in the conventional single-user MIMO.
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