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Abstract—In this letter, we investigate the security of a single-
antenna rechargeable source node in the presence of a multi-
antenna rechargeable cooperative jammer and a potential single-
antenna eavesdropper. The batteries at the legitimate transmit-
ting nodes (i.e. the source node and the jamming node) are
assumed to be limited in capacity and are modeled as queueing
systems. We investigate the impact of the energy arrival rates
at the batteries on the achievable secrecy rates. In our energy-
constrained network, we propose an efficient scheme to enhance
the system’s security by optimizing the transmission timesof
the source node. The jammer uses a subset of its antennas (and
transmit radio-frequency chains) to create a beamformer which
maximizes the system’s secrecy rate while completely canceling
the artificial noise at the legitimate destination. Our numerical
results demonstrate the significant average secrecy rate gain of
our proposed scheme.

Index Terms—Cooperative jamming, batteries, secrecy rate.
I. I NTRODUCTION

In battery-based energy-constrained communication sys-
tems, network lifetime maximization is very crucial [1], [2].
Energy-harvesting schemes were integrated into communica-
tion systems as a powerful solution to the problem of limited
network lifetime since terminals can harvest energy from
ambient energy sources (solar, wind, etc.) [3].

Security is critical for wireless channels due to the broad-
cast nature of the medium. In [4], the authors assumed a
source node (Alice) that wishes to communicate with her
destination node (Bob) in the presence of a multi-antenna
friendly jammer (Jimmy) and an eavesdropping node (Eve).
The jammer was assumed to transmit artificial noise (AN)
to maximize the secrecy rate. Moreover, the eavesdropper’s
channel state information (CSI) was assumed perfectly known
at the legitimate nodes. The optimal beamforming (BF) vector
and power allocation at the jammer were designed to enhance
the system’s secrecy rate. In [5], the authors proposed the
deployment of an energy-harvesting jammer in a multiple-
input multiple-output wiretap channel. The authors assumed
that the jamming signal vector is not orthogonal to the Alice-
Bob channel vector.

Motivated by [4] and [5], we consider the impact of trans-
mitting nodes’ batteries on the security of the wireless network
in [4] when both Alice and Jimmy are equipped with limited-
capacity rechargeable batteries. The batteries are charged by
the energy harvested from nature.

The contributions of this letter are summarized as follows.

• We investigate the network in [4] when both Alice and
Jimmy are equipped with limited-capacity rechargeable

This paper was made possible by NPRP grant number 6-149-2-058 from
the Qatar National Research Fund (a member of Qatar Foundation). The
statements made herein are solely the responsibility of theauthors.

This paper is published in IEEE Wireless Communications Letters.

batteries. We investigate the impact of the energy arrival
rates at the batteries on the system’s secrecy rate.

• Instead of using all antennas at Jimmy for jamming
Eve as in [4], we propose to use a subset of Jimmy’s
antennas for jamming. In addition, we optimize the data
transmission time to further improve the secrecy rate.

• We show that when one of the two batteries is sat-
urated with energy, the other battery is modeled as a
Geo/Geo/1 queueing system. We also investigate the well-
known Geo/D/1 withunity service rate queueing model
for nature energy-harvesting systems [6], [7], which
generally achieves a lower-bound on the actual system
performance. This lower-bound enables us to relate the
average arrival rates at the batteries with the achievable
secrecy rate.

II. SYSTEM MODEL AND ASSUMPTIONS

We consider the following network model. A source node
(Alice) communicates with her destination node (Bob) in
the presence of a friendly jamming node (Jimmy) and an
eavesdropping node (Eve). Similar to the model in [4], Alice,
Bob and Eve have single antennas while Jimmy hasN
antennas labeled as1, 2, . . . ,N . We denote Alice, Bob, Eve
and Jimmy byA, B, E, andJ, respectively. Time is partitioned
into equal-size time slots whose duration isT time units and
the channel has a bandwidth ofW Hz. We assume flat-fading
channels. The channel coefficient between Noden and Node
m, denoted byhn,m, remains constant during a time slot,
but it changes identically and independently (i.i.d.) fromone
time slot to another. For Jimmy, we use an integer number to
indicate the antenna index. The thermal noise at a receiving
node is modeled as an additive white Gaussian noise (AWGN)
with zero mean and varianceκ Watts/Hz.

We assume that Alice and Jimmy are energy-harvesting
nodes with energy batteries modeled as queueing systems as
in, e.g., [6], [7] and the references therein. The energy arrivals
at Node k ∈ {A, J} are i.i.d. Bernoulli random variables
with averageλk energy packets/slot [6], [7].1 The Bernoulli
arrival model is simple, but it still can capture the random and
sporadic nature of packet arrival at the batteries. The battery
at Nodek ∈ {A, J} is denoted byBk and has a maximum
capacity ofBmax

k .
Assuming the energy arrival model in [6], [7], each energy

packet arrives with certain amount of energy and is transmitted
with the same amount of energy. We assume that an energy
packet at Alice containseA energy units and at Jimmy contains

1Although we assume i.i.d. energy arrivals at each node as in [6], [7], the
case of correlated arrivals at the nodes can be considered inall parts of this
letter. However, we need this assumption to analyze the energy queues Markov
chains in Section IV-A and Appendix A.
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eJ energy units. When Nodek transmits, its average transmit
power isek/Tk, whereTk is the transmission time. The AN
signals used in jamming are modeled as zero-mean circularly-
symmetric complex Gaussian random variables [4].

III. PROPOSEDJAMMING SCHEME

The secrecy outage happens when the transmission rate
exceeds the secrecy rate. LettingCL

n,m denote the channel
capacity of then − m link when the eventL is true, the
secrecy rate of the Alice-Bob link is given by

C
L
s,A=

[

CL
A,B − CL

A,E

]+

≤ CL
A,B = CA,B (1)

where[·]+ denotes the maximum between the enclosed value
between brackets andzero andL ∈ {{BJ > 0}, {BJ = 0}}
represents the state of Jimmy’s battery. IfL = {BJ > 0}
(L = {BJ = 0}), Jimmy’s battery has (no) energy and hence
he can(not) help in jamming Eve. The last equality in (1)
follows from the fact that the Alice-Bob link rate does not
change with Jimmy’s activity.2

Our proposed jamming scheme is summarized as follows
• In each time slot, if Alice and Jimmy batteries have

energy, Alice transmits her data with rate equal to the
secrecy rateCBJ>0

s,A . We assume that during Alice’s
transmission, Jimmy creates a beamformer to maximize
the secrecy rate of Alice while completely canceling the
AN interference at Bob. The weights used at Jimmy are
chosen to null the interference at Bob while maximizing
the interference at Eve’s receiver.

• If Alice’s battery has energy and Jimmy’s battery has no
energy (hence he cannot transmit the AN signal), Alice
transmits her data with secrecy rateCBJ=0

s,A .
• If Alice’s battery has no energy, she cannot transmit data

and hence she and Jimmy remain idle during the current
time slot.

A similar BF-jamming scheme was proposed in [4]. However,
our approach is distinct in the following aspects: 1) Instead of
using all of Jimmy’s antennas for jamming Eve, which requires
N radio-frequency (RF) chains, we assume that only a set
of K RF chains is available at Jimmy (or he only activates
anyK ≤ N of them during the transmissions).3 This reduces
the power consumption and hardware design complexity since
the scheme reduces the number of RF chains and antennas
to K and also reduces signal processing complexity since we
need to estimate fewer channels to apply BF-jamming. 2) We
optimize Alice’s transmission times to enhance the achievable
secrecy rate due to the increase of the transmit and jamming
powers. In addition, we derive closed-form expressions for
the optimal weight vector at Jimmy using a geometric method
of orthogonal projection. Moreover, we obtain expressionsfor
the system’s secrecy rate and its average. 3) We analyze the
energy arrival randomness at Alice and Jimmy and show their
impact on the average secrecy rate.

We start by investigating the case when both Alice and
Jimmy are active. LetJ ∈ {1, 2, . . . ,K} with cardinality

2The battery state (i.e. empty or nonempty) at Alice and Jimmycan be
announced to all nodes using a known pilot.

3For simplicity, we assume that antennas labeled from1 to K are used at
Jimmy for jamming Eve.

K ≤ N denote the set of Jimmy’s antennas that are used
to jam Eve. Jimmy designs a cooperative beamformer using
his antennas inJ to maximize the secrecy rate of Alice. Full
CSI is assumed at all nodes including Eve’s CSI as in [4].
This assumption is valid when Eve is an active node in the
network, i.e., another node that communicates with Bob.

Let ΓA = eA
T

andΓJ = eJ
T

. For given channel realizations,
the rates of the Alice-Bob and Alice-Eve links are

CA,B=αA log2

(

1+

ΓA

αA
θA,B

κW

)

CBJ>0
A,E = αA log2

(

1+

ΓA

αA
θA,E

κW+ ΓJ

αA
|
∑

j∈J g∗j hj,E|2

) (2)

whereαA = TA/T ∈ [0, 1]. The secrecy rate isCBJ>0
s,A =

[CA,B−CBJ>0
A,E ]+ and a positive secrecy rate is achieved when

θA,B

κW
>

θA,E

κW+
ΓJ
αA

|
∑

j∈J
g∗
j
hj,E|2

. The superscript∗ denotes

the complex-conjugate transpose,| · | denotes the absolute
value, θj,k = |hj,k|2 denotes channel gain (i.e. squared
magnitude of the channel coefficienthj,k) between Node
j ∈ {A, 1, 2, 3, . . . ,N} and Nodek ∈ {E,B, 1, 2, . . . ,N},
and g = [g1, g2, . . . , gK]

⊤, where the superscript⊤ denotes
vector transpose, is the BF weight vector whose dimension is
K × 1 with gj as the weight used at Antennaj ∈ J .

From (2), the signal-to-interference-plus-noise ratio (SINR)
at Bob increases withαA while the numerator and denom-
inator of the SINR at Eve increases withαA. Hence, the
appropriate selection ofαA can enhance the secrecy rate.

We aim at maximizing the secrecy rate in a given time slot
over the weight vector used at Jimmy and the transmission
time. That is,

max :
g

αA∈[0,1]

αA

[

log2

(

1+

ΓA

αA
θA,B

κW

)

−log2

(

1+

ΓA

αA
θA,E

κW+ ΓJ

αA
|
∑

j∈J
g∗jhj,E|2

)]

.

(3)
For a given (fixed)αA, we notice that the optimization
problem becomes independent ofαA. This implies that the
optimal weight vector is independent ofαA. Hence, we can
solve two separate optimization problems. More specifically,
for a fixedαA, maximizingCBJ>0

s,A over the weight vectorg is

equivalent to minimizinglog2

(

1 +
ΓA
αA

θA,E

κW+
ΓJ
αA

|
∑

j∈J
g∗
j
hj,E|2

)

.

Since the logarithmic function is a monotonically increasing
function, the problem reduces to the maximization of the
following objective function

max :
g

C
BJ>0

s,A →max :
g

|
∑

j∈J

g
∗
j hj,E|

2
. (4)

The simplified objective function,|
∑

j∈J g∗jhj,E|2, is com-
pletely independent ofαA.

Let hE=[h1,E, h2,E, . . . , hK,E]
⊤ ∈ CK×1 denote the coef-

ficients vector from the Jimmy’s antennas to Eve’s antenna,
whereCK×1 denotes the set of allK-dimensional complex
vectors, andK represents the number of used antennas in
jamming Eve. Moreover,hB = [h1,B, h2,B, . . . , hK,B]

⊤ ∈
CK×1 denotes the coefficients vector from Jimmy’s antennas
to Bob’s antenna. The optimal weight vectorg that maximizes
|g∗hE|2 = |

∑

j∈J g∗jhj,E|2 subject to (s.t.) the normalization
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constraint‖g‖2 = 1, where‖·‖ represents theℓ2-norm, and the
total elimination of the interference at Bob, i.e.,|g∗hB| = 0,
can be achieved by solving the following optimization problem

max :
g

|g∗
hE|

2
, s.t. |g∗

hB|=0, ‖g‖2=1. (5)

Since both the objective function and the constraints are inde-
pendent ofαA, the optimal weight vector is independent ofαA

as mentioned earlier. To solve this problem, we first note that
the optimal weight vector must null the interference at Bob.
This implies that the optimal weight vector is orthogonal to
hB and belongs to a subspace orthogonal to the channel vector
hB. Let V denote the orthogonal complementary subspace of
the subspace spanned byhB. Then, we choose the weight
vector that belongs toV and at the same time maximizes the
term |g∗hE|2. According to the closest point theorem [8], the
optimal weight vector is the orthogonal projection ofhE onto
the subspaceV. Sinceg has a unit norm, we must divide the
projection vector by its magnitude. Thus,

g
⋆ =

ΨhE

‖ΨhE‖
(6)

whereΨ is the projection matrix which is given byΨ=IK−
hBhB

∗

‖hB‖2 , andIK denotes the identity matrix whose size isK×K.
Then, we substitute withg = g⋆ into the objective function
of (3) and optimize (3) overαA.

Remark 1. If Eve’s CSI is unknown at the legitimate nodes,
Jimmy designs the AN vector to lie in a subspace orthogonal
to the subspace spanned by the channel vector between Jimmy
and Bob. In this case, the optimal beamformer is a precoding
matrix, denoted by G, and is given by the solution of h⊤

BG =
0. The columns of G ∈ CK×(K−1) are combined using an AN
vector of zero-mean circularly-symmetric complex Gaussian
random variables. Since the AN precoding matrix has K − 1
columns, the AN vector size is (K − 1)× 1.

Finally, we investigate the case when Alice’s battery has
energy and Jimmy’s battery has no energy. When Jimmy’s
battery is empty, the secrecy rate is given by

C
BJ=0
s,A =αA

[

log2

(

1+

ΓA

αA
θA,B

κW

)

− log2

(

1+

ΓA

αA
θA,E

κW

)]+

≤C
BJ>0
s,A

(7)
with positive secrecy rate whenθA,B>θA,E.

IV. BATTERIES QUEUEING ANALYSES

Let CBJ=0
A,B = E{CBJ=0

A,B } andCBJ>0
A,B = E{CBJ>0

A,B } denote
the average secrecy rate of Alice transmission when Jimmy
has no energy and has energy to help, respectively, where
E{·} denotes the statistical expectation. When Jimmy’s battery
is empty and Alice’s battery is nonempty, Alice transmits
with secrecy rateCBJ=0

s,A . When Jimmy’s battery is nonempty
and Alice’s battery is nonempty, Alice transmits with secrecy
rateCBJ>0

s,A . Hence, the average number of securely decoded
bits/sec/Hz at Bob is given by

µA=
(

C
BJ>0
A,B Pr{BA>0, BJ>0}+C

BJ=0
A,B Pr{BA>0, BJ=0}

)

.

(8)

When θA,B

κW
≤ θA,E

κW+
ΓJ
αA

|
∑

j∈J
g∗
j
hj,E|2

or Alice’s battery is

empty, there is no energy leaving Jimmy’s battery. Hence, the
average service rate ofBJ is

µBJ
=Pr{BA > 0}Pr

{

θA,B

κW
>

θA,E

κW + ΓJ

αA
|
∑

j∈J
g∗jhj,E|2

}

.

(9)
An energy packet is depleted from Alice’s battery when

Jimmy’s battery is nonempty and the channel is secure or when
Jimmy’s battery is empty and the channel is secure. Hence,
the average service rate of Alice’s battery is given by

µBA
=Pr{BJ > 0}β + Pr{BJ = 0}Pr {θA,B > θA,E} (10)

whereβ = Pr

{

θA,B

κW
>

θA,E

κW+
ΓJ
αA

|
∑

j∈J
g∗
j
hj,E|2

}

and θA,B

κW
>

θA,E

κW+
ΓJ
αA

|
∑

j∈J
g∗
j
hj,E|2

and θA,B > θA,E are the conditions

to achieve a positive secrecy rate when Jimmy’s battery is
nonempty and empty, respectively.

From (9) and (10), the service processes of Alice and Jimmy
batteries are coupled and the battery states are correlated.
Hence, it is not possible to obtain closed-form expressions
for the marginal and joint probabilities inµA, µBJ

, andµBA
.

Nevertheless, in the following subsections, we investigate two
important special cases to gain some insights.

A. The case of large batteries capacities and λA=1 or λJ=1

1) The case of λA = 1: WhenλA = 1, Alice always has
energy to transmit data. In other words, she has a reliable
energy supply. Hence,Pr{BA = 0} = 0 andPr{BA > 0} =
1. The average service rates of the energy queues are thus
given byµBJ

= β and

µBA
=Pr{BJ>0}β+Pr{BJ = 0}Pr{θA,B>θA,E} . (11)

Moreover, the average secrecy rate is given by

µA=C
BJ>0
A,B Pr{BJ > 0}+ C

BJ=0
A,B Pr{BJ = 0}. (12)

Since the average service rate ofBJ does not depend on the
state ofBA, and the arrival process is stationary with average
λJ, BJ becomes a Geo/Geo/1/Bmax

J . We analyze its Markov
chain in Appendix A. WhenBmax

J is very large, the probability
that Jimmy’s battery is nonempty is given by

Pr{BJ > 0} = min

{

λJ

β
, 1

}

. (13)

Substituting with (13) into (12), the average secrecy rate of
the system is given by

µA=C
BJ>0
A,B min{

λJ

β
, 1}+ C

BJ=0
A,B (1−min{

λJ

β
, 1}). (14)

Remark 2. The maximum achievable average secrecy rate is
µA = CBJ>0

A,B bits/sec/Hz. If λJ ≥ β, min{λJ

β
, 1} = 1. Hence,

µA is constant with β ≤ λJ ≤ 1, i.e., does not change with λJ,
and the maximum average secrecy rate is achieved. If λJ < β,
min{λJ

β
, 1} = λJ

β
and µA is linearly increasing with λJ < β.
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2) The case of λJ = 1: When Jimmy has a reliable energy
supply,Pr{BJ = 0} = 0 andPr{BJ > 0} = 1. In this case,
the average secrecy rate of the system is given by

µA = min{
λA

β
, 1}CBJ>0

A,B . (15)

Remark 3. If λA ≥ β, min{λA

β
, 1} = 1. Hence, µA is

constant with β ≤ λA ≤ 1, and the maximum average secrecy
rate is achieved, i.e., µA = CBJ>0

A,B bits/sec/Hz. If λA < β,
min{λA

β
, 1} = λA

β
and µA is linearly increasing with λA < β.

B. Geo/D/1 Queueing Model

From [6], [7], the probability of the Geo/D/1 energy queue
with unity service rate being empty is equal to1 − λk for
Bk. Applying this model to our scenario, we can rewrite (8)
asµA = λA

(

CBJ>0
A,B λJ + CBJ=0

A,B (1− λJ)
)

. SinceCBJ>0
A,B ≥

CBJ=0
A,B , as the energy arriving at Jimmy increases, the secrecy

rate increases. When Jimmy has a reliable energy supply, this
represents the best-case for securing the network. In addition,
the rate is linearly increasing with the average energy packet
arrival rate at Alice because asλA increases, Alice will be
more likely active and able to transmit data which improves
her rate. The maximum average rate is achieved whenλJ =
λA = 1 energy packets/slot.

V. SIMULATION RESULTS

We simulated the system using40000 channel realizations
and assumed that each channel coefficient is modeled as
a circularly-symmetric Gaussian random variable with zero
mean and unit variance. Moreover, we assumeN = 6,
eA/κ/(TW ) = eJ/κ/(TW ) = 20 dB, andBmax

A = Bmax
J =

10. Figure 1 shows the average secrecy rate for our proposed
jamming scheme with and without optimization overαA.
When we select anyK out of the N antennas at Jimmy,
the average secrecy rate of our proposed BF-jamming scheme
is close to the case of using all of Jimmy’s antennas, i.e.,
K = N = 6, in jamming. Matching our analysis and Remarks
2 and 3, the average secrecy rate increases linearly with both
λA andλJ. If the arrival rate of a battery is high enough to
saturate the battery with energy packets, the average secrecy
rate becomes fixed with that arrival rate. For this reason,
the curves versusλA and λJ become flat with high arrival
rates. The gain ofαA optimization is obvious. For example,
when λA = 0.8 energy packets/slot andλJ = 0.9 energy
packets/slot, the gain over the case of no optimization forαA,
i.e., αA = 1, is 420%.

VI. CONCLUSIONS

In this letter, we investigated the impact of the batteries
at a source node and a jammer on the achievable average
secrecy rates. We showed that the average secrecy rate is
nondecreasing with the arrival rates at the energy batteries
and it becomes constant when these batteries are saturated
with energy packets. We proposed a cooperative jamming
scheme and showed that the jammer does not need to use
all of its antennas for jamming Eve. The achievable perfor-
mance measured by the average secrecy rate is comparable
with the case of using all antennas, which requires complex
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Fig. 1. Average secrecy rate versus the energy arrival rate at Jimmy for
different values ofK andλA [energy packets/time slot].

hardware design since it increases the number of transmit RF
chains and antennas and also complicates system design since
the number of estimated channels increases. In addition, we
showed that the optimization over the transmission time,TA,
can significantly enhance the average secrecy rate.

APPENDIX A
BATTERY MARKOV CHAIN

Analyzing the state balance equations of the Markov chain
of the birth-death process of a Geo/Geo/1 queueing system, it
is straightforward to show that the probability that the energy
queueBk has1 ≤ ϑ ≤ Bmax

k energy packets, denoted byνϑ,
is given by

νϑ = ν◦
1

(1− µBk
)

(

λk(1− µBk
)

(1 − λk)µBk

)ϑ

= ν◦
ηϑ

(1− µBk
)

(16)

whereϑ ∈ {1, 2, . . . ,Bmax
k } and η =

λk(1−µBk
)

(1−λk)µBk

. Using the

normalization condition
∑∞

ϑ=0 νϑ = 1, after some manipula-
tions, the probability ofBk being empty,ν◦, is given by

ν◦=
1

1 + 1
(1−µBk

)

(

1−η
Bmax
k

+1

1−η
− 1
) . (17)

WhenBmax
k is very large, after some mathematical manip-

ulations,ν◦ in (17) becomes

ν◦ = 1−min{λk/µBk
, 1}. (18)
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