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Abstract

This letter proposes a novel generalized method to quantify the angular dispersion of radiated

energy in realistic three dimensional space. Based on the first three coefficients of the 2-D Fourier

transform, simple mathematical expressions are derived to independently or jointly quantify the angular

dispersion of energy in a reduced 2-D or realistic 3-D space, respectively. The proposed quantifiers

include mean direction of arrival, circular variance (CV), true standard deviation (TSD), angular spreads

(AS), angular constriction (AC), and direction of maximum fading (DoMF). The proposed quantifiers

are helpful in establishing an appropriate mechanism to measure the angular dispersion in 3-D space.

These quantifiers provide results in radians with true physical meaning unlike their counterparts in the

literature. Moreover, an analysis on the impact of distribution truncation/distortion on the degree of

accuracy in measuring the angular dispersion is presented which signifies the importance of true angular

spread quantification. The proposed quantifiers can thus be considered as an appropriate goodness-of-fit

criterion in the characterization of spatial statistics of multipath fading channels.

Keywords: Multipath channels, fading, Angle-of-arrival, Gaussian, shape factors, and standard devi-

ation.
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1 Introduction

Various definitions to quantify angular dispersion of multipath components are available in the

literature. These definitions include total angular span, beamwidth, the root mean square (RMS)

value of the angular data, standard deviation (SD), and shape factors. Use of beamwidth and

RMS value as the definition of angle spread are often ill suited for general application to periodic

functions such as angle-of-arrival (AoA) distributions [1]. SD of the Gaussian angular energy

distribution heavily depends on the total angular span and the degree of truncation of the

distribution (if there is any truncation in the distribution). So the utilization of SD of an exact

bell-shaped Gaussian function as the accurate SD of the angular data will certainly lead to wrong

results. In [1], a theory of spatial shape factors to quantify the dispersion of multipath waves

in azimuth (2-D) plane is proposed. Three shape factors include angular spread (AS), angular

constriction (AC), and azimuthal direction of maximum fading (DoMF); which are calculated

based on 0th, 1st, and 2nd complex Fourier coefficients of the azimuth AoA distribution. The AS

shape factor defined in [1] used to denote the spread in the range from 0 to 1, can be considered

as the most useful one, since it is invariant under changes in transmitted power and under any

series of rotational or reflective transformation of the distribution of AoA. However, this definition

has the disadvantage of not providing direct physical information about the angle spread, i.e.,

information either in degrees or radians. Another approach to quantify the multipath dispersion

in 2-D space is proposed in [2], which quantifies the azimuthal angular dispersion in terms of

the circular variance (CV) and SD by using trigonometric moments. This approach proposes SD

as an appropriate measure to quantify the AS, as it provides physical meanings by computing

AS in radians. In [3], various three-dimensional shape factors are proposed based on six special

spherical harmonics. However, this approach lacks the physical meaning of AS on the same

grounds, as discussed above.

This letter proposes a novel generalized method of quantifying the spread of multipath energy

in marginal (2-D) and joint (3-D) angular domains. Various outdoor measurement campaigns

(e.g., [4]) show that the scattering structures in urban environments usually give rise to Gaus-

sian distributed AoA profile. However, many outdoor propagation scenarios emerge when the
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spatial distribution of scatterers does not produce an exact Gaussian distributed AoA profile,

but instead they form some truncated or distorted versions of Gaussian distributions. Therefore,

a discussion on the factors which cause truncation in AoA profile is provided along with an

analysis on the impact of degree-of-truncation on the proposed angle spread quantifier named

true standard deviation (TSD). The proposed quantifier is helpful in finding the accurate angular

spread of truncated or distorted angular distributions as well as of the angular data acquired in

measurement campaigns.

2 3-D Spatial Spread Quantifiers

Let, Fn,m = Cn,m + jSn,m, be defined as the nth and mth complex trigonometric moment of the

angular energy distribution p(φ, θ) along azimuth and elevation AoA, respectively.

Fn,m =
1

Po

∫ φmax

φmin

∫ θmax

θmin

p(φ, θ)ej(nφ+mθ) dθ dφ. (1)

The total energy distributed in angular domain is equal to Po =
∫ φmax

φmin

∫ θmax

θmin
p(φ, θ)dθ dφ. The

azimuthal and elevational angular span can be defined as, φspan = φmax−φmin and θspan = θmax−

θmin, respectively. The complete 3D directional range is described in azimuth and elevation planes

by a span of 2π and π, respectively. Since the use of trigonometric moments is advantageous

in manipulating discrete data, we can extend our method from continuous distribution to the

discrete data obtained in measurements. The trigonometric parameters, Cn,m and Sn,m for the

angular energy distribution p(φ, θ) are defined as,

Cn,m =
1

Po

∫ φmax

φmin

∫ θmax

θmin

p(φ, θ) cos(nφ+mθ)dθ dφ, (2)

Sn,m =
1

Po

∫ φmax

φmin

∫ θmax

θmin

p(φ, θ) sin(nφ+mθ)dθ dφ. (3)

In the case of discrete measured or observed data, the definitions for the trigonomet-

ric parameters can be modified as, Cn,m = 1/P̄o
∑K

k=1

∑L
`=1 fk,` cos(nφk + mθ`), and Sn,m =
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Figure 1: Different cases of joint and marginal AS quantification.

Figure 2: Different cases of joint and marginal AC quantification.

1/P̄o
∑K

k=1

∑L
`=1 fk,` sin(nφk+mθ`); where, P̄o =

∑K
k=1

∑L
`=1 fk,`, and fk,` is the number of occur-

rences for the azimuth and elevation AoA φk and θ` in the (k, `) bin of the 2-D histogram. The 2-D

Fourier coefficients can also be obtained as, Fn,m = ρn,m ejβn,m , where the mean resultant and the

direction of trigonometric moments are ρn,m =
(
C2
n,m + S2

n,m

)1/2
and βn,m = arctan(Sn,m/Cn,m),

respectively. A complex 2-D Fourier coefficient matrix of first three harmonics can be expressed

as,

F =

[
0th︷︸︸︷ 1st︷︸︸︷ 2nd︷︸︸︷
F00 F01 F02

F10 F11 F12

F20 F21 F22

]
. (4)

The inter-connection of coefficients is pertinent to show, as it offers simplification operations

in the following derivations, F1,1 ≈ F0,1 × F1,0 and F2,2 ≈ F0,2 × F2,0. This further suggests that,

ρ1,1 ≈ ρ1,0 × ρ0,1, ρ2,2 ≈ ρ2,0 × ρ0,2, β1,1 ≈ β1,0 + β0,1, and β2,2 ≈ β2,0 + β0,2. The coefficients F12

and F21 are not used in the derivations, therefore shaded in gray in the matrix definition. The

0th moment represents multipath angular power density, Po = F00.
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2.1 3-D Shape Factors

This section presents an extension of multipath shape factors proposed in [1] from 2D (azimuthal)

to 3D propagation. The conventional azimuthal AS shape factor Λ (using similar notations, as

in [1]) defines the concentration of multipath about a single azimuthal direction. We define

azimuthal, elevational, and joint AS shape factors to calculate the concentration of energy in-

dependently or jointly along azimuth and/or elevation axes. The azimuthal and elevational AS

shape factors are defined as Λφ =
√

1− ρ210 and Λθ =
√

1− ρ201, respectively. The joint AS

shape factor can be obtained as,

Λφ,θ =
√

1− ρ211. (5)

These AS shape factors range from 0 to 1, with 0 denoting a signal arriving from exactly

one direction and 1 denoting no clear bias in angular distribution about a single direction. The

relationship of independent azimuthal and elevational AS shape factors with the joint AS shape

factor can be expressed as, Λφ,θ ≈
√

Λ2
φ + Λ2

θ − Λ2
φΛ2

θ. The proposed AS shape factors provide

flexibility to quantify the dispersion in a reduced (integrated) 2-D space or a realistic 3-D space;

see four different cases illustrated in Fig. 1.

The AC shape factor defined in [1], is a measure of the concentration of AoA distribution

about two physical directions in azimuth plane. We extend this shape factor to three AC shape

factors, viz: azimuthal, elevational, and joint AC. The azimuthal and elevation AC can be defined

as, γφ = (|F20 − F 2
10|) / (1− |F10|2), γθ = (|F02 − F 2

01|) / (1− |F01|2), respectively. The joint 3D

AC can be defined as,

γφ,θ =
|F22 − F 2

11|
1− |F11|2

. (6)

The proposed AC shape factors range from 0 to 1, with 1 denoting the extreme case of

signals arriving exactly from two directions and 0 denoting no clear bias in the two directions.

The definition of these AC parameters is illustrated in Fig. 2 for six different scenarios. The

azimuthal constriction, γφ, quantises the distribution of AoA about exactly two directions in

azimuth plane integrated over the elevation plane. Similarly, the elevational constriction, γθ,

quantises the distribution of AoA about exactly two angles in the elevation plane integrated
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over the azimuth plane. The joint AC, γφ,θ, quantises the joint azimuth and elevation AoA

distribution about exactly any two directions in realistic 3-D space.

The DoMF is the orientation for which the wave-number spread is maximized. The azimuth

and elevation DoMF can be obtained in radian by, χmax
φ = 0.5 arctan {(S20 − 2C10S10) / (S2

10 + C20 − C2
10)}

and χmax
θ = 0.5 arctan {(S02 − 2C01S01) / (S2

01 + C02 − C2
01)}, respectively. The composite DoMF

can be obtained as, χmax
φ,θ = 0.5 arctan ((S22 − 2C11S11)/(S

2
11 + C22 − C2

11)), which represents

χmax
φ,θ ≈ 1

2

(
χmax
φ + χmax

θ + µφ + µθ
)
.

2.2 True Standard Deviation

The first moment gives the mean direction of AoA distribution, therefore, the mean AoA along

azimuth and elevation directions can be obtained as µφ = β10 and µθ = β01, respectively. We

define a basic measure of angular dispersion along azimuth and elevation AoA, the circular

variance. It can be obtained in azimuth and elevation planes as, ςφ = 1 − ρ10 and ςθ = 1 − ρ01,

respectively. The circular variance CV ranges between 0 and 1. The values closer to 0 represent

high concentration of AoA distribution along the mean (µ) direction of AoA, whereas, a value

closer to 1 represent widely dispersed AoA distribution. It is invariant under any changes in

transmitted power and under any series of rotational or reflective transformation of p(φ, θ).

The joint CV parameter can be represented as, ςφ,θ = 1 − ρ11. This joint CV is interlinked

with marginal CVs as, ςφ,θ ≈ ςφ + ςθ − ςφςθ. The CV is inter-related with AS shape factor as,

Λφ,θ =
√

2ςφ,θ − ς2φ,θ.

The definitions of CV can be extended to define TSD in azimuth and elevation planes as,

σφ =
√
−2 ln(1− ςφ) =

√
−2 ln(ρ10) and σθ =

√
−2 ln(1− ςθ) =

√
−2 ln(ρ01), respectively. The

joint TSD,

σφ,θ =
√
−2 ln(1− ςφ,θ) =

√
−2 ln(ρ11). (7)

The joint TSD σφ,θ represents the Euclidean separation between σφ and σθ, which can also be

obtained as, σφ,θ ≈
√
σ2
φ + σ2

θ . These relationships for SD of angular energy distribution give

the true physical information about the angular dispersion of the multipath waves in radians.

Like the CV, TSD is also invariant under changes in transmitted power and under any series
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of rotational or reflective transformation of p(φ, θ). Since it provides true physical information

about the dispersion of the multipath signals in space, it can also stand as the major candidate

for the unanimous definition of angle spread of multipath signals.

The proposed TSD quantifiers are inter-related with the angular spread shape factor as,

σφ =
√
− ln(1− Λ2

φ) and σθ =
√
− ln(1− Λ2

θ). Moreover, the circular variance can also be

linked with the angular spread shape factor as, Λφ =
√

2ςφ − ς2φ and Λθ =
√

2ςθ − ς2θ .

3 Effect of Distribution Truncation on True Standard De-

viation

This section presents an analysis on the degree of accuracy of the proposed TSD quantifier for

the cases of exact Gaussian and distorted Gaussian AoA distributions. While the Gaussian case

is just an example, the proposed analysis can be extended to any distribution and measurement

data. Various measurement campaigns in the literature (see e.g., [4]) show that the scattering

structures in urban environments usually give rise to the Gaussian distribution of AoA observed

at the base station (BS). However, many situations have been observed when the distribution of

the AoA does not match exactly a true bell-shaped Gaussian. Such situations usually emerge in

outdoor environments when the spatial distribution of scatterers does not produce exact Gaussian

distributions in AoA, but instead they form some truncated, distorted, cut or constant-added

versions of Gaussian distributions. Therefore, the pdf of azimuth AoA is usually modeled as

wrapped Gaussian [5, 6]. The major factors which give rise to the situations where the angular

distribution is subjected to truncation, can be categorized as follows,

• Factor 1: The use of directional antenna at the BS eliminates the scatterers falling out of

the beam-range of antenna. This gives rise to a truncated distribution of the AoA at the

BS [7]. This sort of situations usually belongs to the space division multiple access (SDMA)

systems which rely on the use of adaptive narrow-beam antennas and the nonhomogeneous

distribution of users in a cellular system to increase system capacity [8].

• Factor 2: The propagation environment of streets crowded with automobile traffic leads to
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Figure 3: (a) Truncated 3-D Gaussian distributed AoA, (σGφ = 40o and σGθ = 20o), (b) Effect
of distribution truncation on azimuthal angular spread, (c) Effect of distribution truncation
on elevational angular spread, (d) Effect of distribution truncation on joint angular spread,
(σGφ = 40o and σGθ = 20o).

a truncated AoA distribution caused by the physical dimensions of the streets. 3-D angular

investigations at BS [9] show street canyon dominated propagation.

• Factor 3: The measurement campaigns of both indoor [10] and outdoor [4] environments

demonstrate that in addition to the double exponential Laplacian (indoor case) and bell-

shaped Gaussian (outdoor case), there are always very uniform tails on both sides of the

mean AoA in the angular domain. The formation of these uniform tails in the distribution

of AoA is in fact the aftermath of the reflections/scattering of the radio signal from the

scatterers that surround BS. The uniform tails cause deformation in the shape of Gaussian

or Laplacian, and hence alter the measure of angle spread, i.e., the SD.

• Factor 4: Far scatterers like high-rise buildings (in urban environments) or mountains

(in rural environments) significantly contribute to the multipath scattering phenomenon

in addition to the scattering structures located near the mobile stations [9]. Hence, they

give rise to non-symmetric and non-isotropic scattering. This kind of scattering induces a

non-uniform and non-symmetric distribution in the AoA as seen at the BS.

Measurements in [4] show that in addition to bell-shaped Gaussian distribution in AoA,

there is always some additional part, which distorts the Gaussian function. This additional part

certainly disturbs the angle spread measure. That is why the definition of SD of the exact bell-

shaped Gaussian function, (σGφ and σGθ ), cannot be trusted to be used in calculating the spatial
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fading correlations among antenna array elements. The effect of distribution truncation on the

proposed angular spread quantifier TSD is shown in Fig. 3. It is evident that the proposed

definition of TSD (σφ, σθ, σφ,θ) of the angular energy distribution of the AoA, depends on the

peak(s) of the distribution as well as on the angular span of the data. SD of the exact bell-shaped

Gaussian function, σG∗ , remains equal to the proposed TSD, σ∗, of the Gaussian distribution as

long as the total angular span remains more than 8σG∗ (or twice of 4σG∗ ). The angular span of

8σG∗ encompasses about 99% of the total energy, this refers to the case of no truncation. As soon

as the angular span lowers 8σG∗ (in case of a truncated Gaussian), the TSD of the angular energy

starts decreasing, and it decreases sharply for the smaller values of the span. This definition of

TSD in 3-D space can stand as the major candidate for the unanimous definition of angle spread

of multipath signals to assist in calculating more accurate spatial correlations and other high

order statistics of multipath fading channels for emerging wireless communication networks.

Various measurement campaigns and analytical models for characterization of wireless mul-

tipath fading channels have been proposed in the literature. No such measure of the angular

dispersion has been developed so far, on which the proximity of these models could be tested.

Usually, least squares error (LSE) is used to measure the fitness of analytical results over the field

measurement results [11]. However, the shape of the distribution of energy in angular domain is

not so important rather the variance of the angle spread is important. The proposed TSD offers

a realistic measure of almost all necessary information about the angle spread in 3-D space to be

used as a goodness-of-fit measure, no matter what functions and how much truncation are used.

4 Conclusions

New generalized quantifiers to measure the dispersion of energy in realistic 3-D space have been

proposed. The proposed quantifiers measure the angular dispersion of energy in joint 3-D space

(or reduced 2-D planes) and provides the results in radians with true physical sense unlike their

counterparts in the literature. An analysis on the impact of distribution truncation has been

presented to demonstrate the applicability of the proposed quantifiers as goodness-of-fit criterion

in the characterization of spatial statistics of multipath fading channels.
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