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Abstract

In this letter, we propose a new coordinated multipoint (CoMP) technique based on mutual infor-

mation (MI) accumulation using rateless codes. Using a stochastic geometry model for the cellular

downlink, we quantify the performance enhancements in coverage probability and rate due to MI

accumulation. By simulation and analysis, we show that MI accumulation using rateless codes leads to

remarkable improvements in coverage and rate for general users and specific cell edge users.

Index Terms

CoMP, Cloud RAN, Rateless Codes, 5G Cellular Downlink, Stochastic Geometry, PPP, Joint Trans-

mission.

I. INTRODUCTION

Cloud radio access based cellular networks are envisioned to be based on amorphous architec-

tures rather than a strict cell-based design. In an amorphous cloud RAN downlink setting, a user

will be served by more than one nearest BS through joint transmission. In this letter, we propose

a new CoMP technique where the coordinating BSs jointly transmit multiple codewords of the

same information packet using rateless codes [1], [2] leading to MI accumulation at the user.

Modeling the BS locations by a Poisson point process (PPP), we provide expressions for the

success (coverage) probability and rate of the typical user under the proposed CoMP scheme. We

show that with MI accumulation using rateless codes, the users observe high coverage benefit

and the following rate gains: the users close to only one BS and the users equidistant from three

BSs have a rate increase by a factor of 2.6 and 6.12, respectively.
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II. MI ACCUMULATION

The cooperating BSs jointly transmit a K-bit information packet to the user. These BSs have

access to the K bits through the X2/S1 interface of backhaul connection to the cloud. Each

transmitting BS encodes the K-bit packet with a unique rateless code, i.e., if two cooperating

BSs transmit to a user, then they encode the K-bit packet with two different rateless codes

and transmit the two codewords incrementally. In order for the user to resolve (distinguish) the

multiple codewords successfully, the codewords can be communicated over orthogonal frequency

bands. The cooperating BSs can also use NOMA schemes such as sparse code multiple access,

lattice partition multiple access etc to transmit the codewords to the user with added receiver

complexity [3], [4]. The sum rate in the MAC capacity region is achieved by the cooperating

BSs. The multiple codewords are combined at the user in an iterative decoder to decode the K

bits. This decoding process leads to MI accumulation at the user. The achievable rate at the user

is given by

C =

M
∑

i=1

log2 (1 + SIRi) , (1)

where log2 (1 + SIRi) is the MI of codeword i from cooperating BS i. From now onwards,

M = 1 and M > 1 are referred to as the no cooperation (NC) and MI accumulation (MIA)

schemes, respectively. In this letter, we derive results for M = 1 and M = 2.

III. PERFORMANCE CHARACTERIZATION

A. System Model

We consider two independent homogeneous PPPs Φ1 and Φ2 of intensity λ/2. The nodes in

Φk represent BSs using exclusively spreading code k ∈ {1, 2}. We assume a single tier cellular

downlink in which BSs are modeled by a PPP Φ = Φ1 ∪ Φ2 = {Xi}, i = 1, 2, · · · . The typical

user is located at the origin. The distance between the typical user and BS Xi is Di. Each BS

uses constant transmit power. The channel is quasi-static flat fading affected by path loss. The

typical user receives a K-bit packet from the nearest one or more cooperating BSs. During the

typical user reception time, we assume that the interfering BSs are transmitting continuously.

The interference power and SIR at the typical user based on only the nearest BS X1 trans-

mission are given by

I1 =
∑

k 6=1

|hk|2|Xk|−α (2)



3

SIR1 =
|h1|2D−α

1

I1
. (3)

Each packet transmission of K bits has a delay constraint of N channel uses. The time to decode

a K-bit packet T̂ and the packet transmission time T are given by

T̂ = min {t : K < t · C} (4)

T = min
(

N, T̂
)

. (5)

The packet transmission time T quantifies the benefits of MIA using rateless codes as a CoMP

scheme.

The two metrics used to compare the performance of CoMP schemes in this letter are the

success probability and rate of K-bit packet transmission, defined as

ps(N) , 1− P

(

T̂ > N
)

(6)

RN ,
Kps(N)

E [T ]
. (7)

Both ps(N) and RN depend on the distribution of T . Based on (5), the CCDF of T is P (T > t) =

P(T̂ > t), t < N . The CCDF of T̂ is given by

AM (t) , P(T̂ > t) = P

(

K/t ≥
M
∑

i=1

log2 (1 + SIRi)
)

. (8)

In the following, we consider two classes of users, the typical general user and the typical

worst-case user, in the single tier cellular downlink and discuss their packet transmission time

distributions.

B. General User

The typical general user is located at the origin, without conditioning on Φ. Its performance

corresponds to the spatial average over all users in R
2. For the NC case, the user is served only

by the nearest BS and the performance is determined by the SIR distribution [5], [6]

P (SIR > ν) , G(ν) =
1

2F1 ([1,−δ] ; 1− δ;−ν)
. (9)

where 2F1 ([a, b]; c; z) is the Gauss hypergeometric function and δ = 2/α.

Proposition 1. For the general user without cooperation, the CCDF of T is given by

P (T > t) = 1−G(2K/t − 1), t < N. (10)
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Proof: The CCDF is obtained by computing A1 (t) in (8) for the general user.

In the case of MIA, the user is served by the nearest BS in both Φ1 and Φ2. The two cooperating

BSs transmit 2 codewords on 2 different spreading codes. Also the two BSs have i.i.d distances

to the typical user.

Theorem 1. The CCDF of the general user packet transmission time with MI accumulation, T

in (5), is lower bounded as

P (T > t) ≥
∫ γ

0

(G (γ − y)− 1)G′(y) dy, (11)

where γ = 2
(

2K/2t − 1
)

and G(y) is defined in (9) with its derivative G′(y) based on the

derivative of the hypergeometric function

d

dy
2F1 ([a, b] ; c; y) =

ab

c
2F1 ([a + 1, b+ 1] ; c+ 1; y) . (12)

Proof: The proof is obtained by evaluating (8) with M = 2 for the general user. Using the

arithmetic-geometric mean inequality, a bound on (8) can be obtained. Let Yi = SIRi,

√

(1 + Y1) (1 + Y2) ≤ 1 +
1

2
(Y1 + Y2) ⇒

∑

log2 (1 + Yi) ≤ 2 log2

(

1 +
1

2
(Y1 + Y2)

)

. (13)

Using (13), a lower bound for (8) is given by

A2 (t) ≥ P
(

Y1 + Y2 ≤ 2
(

2K/2t − 1
))

. (14)

Note that Y1 and Y2 are i.i.d. To evaluate (14), we need the CCDF of Yi, i.e., F̄Yi
(y) = G(y)

given in (9). Then the bound in (14) can be computed based on

P (Y1 + Y2 ≤ γ) = E [P (Y1 ≤ γ − Y2 | Y2)]

= −
∫ γ

0

(

1− F̄Y1
(γ − y)

)

dF̄Y2
(y). (15)

From (6) and (8), the success probability is given by

ps(N) = 1− AM (N) . (16)

For the NC and MIA schemes, the A1 (N) and A2 (N) are given in (10) and (11) at t = N

respectively. The rate is given by

RN =
Kps(N)

∫ N

0
AM (t) dt

. (17)
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Now we quantify the performance benefits of MIA as a CoMP scheme relative to the NC.

The definition of diversity gain of a CoMP scheme with fixed-rate coding appears in [6].

Equivalently, for rateless coding, the diversity gain is defined as

gd , lim
N→∞

log (1− ps(N))

− logN
. (18)

Based on (16), the diversity gain can be obtained by quantifying the scaling of outage probability

AM(N) as N → ∞. θN = 2K/N − 1 has the following Taylor series

θN =
K log 2

N
+O

(

1

N2

)

, N → ∞. (19)

For the NC case, the scaling of A1(N) is obtained by combining (19) with the asymptotic result

from [7, Sec II.B]

P (Y1 ≤ y) ∼ y
δ

1− δ
, y → 0 (20)

A1(N) = P (Y1 ≤ θN ) ∼
K log 2

N

δ

1− δ
, N → ∞. (21)

For the MIA scheme, the scaling of A2(N) is computed below. For i.i.d Y1 and Y2, using (15)

and (20), it can be shown that

P (Y1 + Y2 ≤ y) ∼
(

δ

1− δ

)2
y2

2
, y → 0. (22)

Hence

A2 (N) ≥ P
(

Y1 + Y2 ≤ 2
(

2K/2N − 1
))

(a)∼ 1

2

(

δ

1− δ

)2(
K log 2

N

)2

, N → ∞, (23)

where (a) follows by applying the Taylor series to 2(2K/2N − 1) similar to (19). Based on (18)

and (21), it is observed that gd = 1 for NC. For MIA,

gd = lim
N→∞

2 log
(

δ
1−δ

K log 2

N
√
2

)

− logN
= 2. (24)

The diversity gain gd provides the scaling law of the outage probability, i.e., rate of decay as

N → ∞. Thus, the scaling of the outage probability of MIA can be interpreted as A2(N) ∼
A1(N)2/2.
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C. Worst-case user

Letting V denote the set of Voronoi vertices of the BS PPP Φ = Φ1 ∪ Φ2 (which is itself a

stationary point process), the typical worst-case user is obtained by placing a user at the origin

o and conditioning Φ on o ∈ V . The worst-case user performance corresponds to the average

over all points in V , which are equidistant from three BSs.

In the Voronoi tessellation of Φ, a worst-case user will have 3 equidistant BSs sharing either the

same spreading code or two unique spreading codes with probability 0.25 and 0.75, respectively.

In the first case, there will be no MI accumulation but amplitude accumulation of the transmitted

signals [6]. In the latter case, the user achieves MI accumulation.

For the NC scheme, the user is served by only one of the three equidistant BSs. The two

other equidistant BSs together with the further away BSs in the network act as interferers.

Proposition 2. For the worst-case user without cooperation (M = 1), the CCDF of T is given

by

P (T > t) = 1−
[

1/ (1 + θ)

2F1 ([1,−δ] ; 1− δ;−θ)

]2

, (25)

where θ = 2K/t − 1.

Proof: The proof is based on computing A1 (t) in (8) for the worst-case user. For details,

refer to [2, Appendix A] (which pertains to the general user case). Let D be the distance of the

typical user from the 3 equidistant BSs in Φ. Its pdf is given by fD (r) = exp (−πλr2) (πλ)2 r3

from [8].

A1 (t) = P

(

θ ≥ |h1|2D−α

(|h2|2 + |h3|2)D−α + I1

)

(26)

(a)
= 1− E

[

exp
(

−|h2|2 − |h3|2 −DαI1
)

θ | D
]

(b)
= 1− 1

(1 + θ)2
E
[

exp
(

−πλH(θ)D2
)]

(c)
= 1− 1

(1 + θ)2
1

(1 +H(θ))2
, (27)

where (a) is due to |h1|2 ∼ Exp(1), (b) follows from the Laplace transform (LT) of two Exp(1)

RVs at θ, the LT of I1 at θDα and H(θ) = δθ
1−δ 2F1 ([1, 1− δ] ; 2− δ;−θ). The E [·] w.r.t the

pdf of D leads to (c). The hypergeometric identity 1 + H(θ) = 2F1 ([1,−δ] ; 1− δ;−θ) yields

(25) from (27).
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For the MIA scheme, we assume that each user is served by the two equidistant BSs with

unique spreading codes (M = 2) with the third equidistant BS interfering.

Theorem 2. The CCDF of the worst-case user packet transmission time with MI accumulation,

T in (5), is lower bounded as

P (T > t) ≥
∫ ∞

0

∫ γ

0

(U (γ − y)− 1) G̃′(y)fD(r) dy dr (28)

G̃(y) = exp

(

−π
λ

2
r2 (2F1 ([1,−δ] ; 1− δ;−y)− 1)

)

(29)

U(y) =
G̃(y)

1 + y
, γ = 2

(

2K/2t − 1
)

. (30)

Proof: To compute the CCDF of T for the worst-case user as per (8) with M = 2, we

note that SIRi, i ∈ {1, 2} are both dependent on D. For SIR1, there will be one interfering BS

at distance D. The other interfering BSs are further away. For SIR2, all interferers are further

away than distance D. Hence to evaluate (8), we define two RVs Ỹ1 and Ỹ2 similar to Section

III-B

Ỹ1 =
|h1|2r−α

|h3|2r−α + I1
, Ỹ2 =

|h2|2r−α

I2
, (31)

where r is the sample value of D. Note that I1 and I2 are from two independent PPPs of intensity

λ/2. Then (8) can be written as

A2 (t) =

∫

P
(

K/t >

2
∑

i=1

log2

(

1 + Ỹi

)

)

fD (r) dr. (32)

Using (13), a lower bound for (32) is given by

A2 (t) ≥
∫

P

(

Ỹ1 + Ỹ2 ≤ 2
(

2K/2t − 1
)

)

fD (r) dr. (33)

The CCDFs of Ỹ1 and Ỹ2 are given by

F̄Ỹ2
(y) = P

(

Ỹ2 ≥ y
)

= G̃(y) (34)

F̄Ỹ1
(y) = U (y) =

G̃ (y)

1 + y
, (35)

where G̃(·) is defined in (29). The proof follows steps quite similar to Proposition 2, (26)-(27)

except for deterministic r. Note that Ỹ1 and Ỹ2 are independent and hence, (15) can be used to

further evaluate (33), completing the proof.

Based on (25) and (28), the resulting ps(N) and RN can be computed numerically for the

worst-case user. In the following, we derive the diversity gain result for the worst-case user.
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A1(N) is obtained from (26) with θ replaced by θN . Using similar arguments as in (19)-(21),

we get

A1(N) ∼ K log 2

N

(

2 +
2δ

1− δ

)

, N → ∞. (36)

Comparing (21) and (36), the additive 2 appears due to the two equidistant interferers and the

function of δ is scaled by 2 since the worst-case user is further away from the serving BS than

the general user, i.e., the mean distance of the worst-case user to the serving BS is 50% more

than that of general user. Hence from (18), gd = 1 for NC.

The scaling of A2(N) is obtained based on (33). For Ỹ1 and Ỹ2 in (31), the asymptotic CDF

is obtained based on the scaling behavior of G̃(y) in (29) as y → 0

P

(

Ỹ2 < y
)

= 1− G̃(y)
(a)∼ π

λ

2
r2

δ

1− δ
y, y → 0 (37)

P

(

Ỹ1 < y
)

= 1− U(y) ∼ 1− G̃(y), y → 0. (38)

where (a) follows from e−x ∼ 1−x, x → 0 and using the previously used hypergeometric identity

along with 2F1 ([1, 1− δ] ; 2− δ;−x) → 1 as x → 0. Using (37) and (38), the asymptotic CDF

of Ỹ1 + Ỹ2 can be obtained similar to (22). Hence the scaling of A2(N) is given by

A2(N) ∼
(

K log 2

N
√
2

)2 ∫
(

π
λ

2
r2

δ

1− δ

)2

fD (r) dr, N → ∞.

From above, it follows that gd = 2 for MIA as per (18).

IV. NUMERICAL RESULTS

In Fig. 1, a plot of the success probability against the delay constraint N is shown for a cellular

network with λ = 1 at α = 3 and K = 75 bits. In MIA, both worst-case and general users

have reduced interference on each codeword compared to the NC case due to the presence of

unique spreading codes. In the NC scheme, the worst-case user has 2 interfering BSs at the same

distance as the desired BS and the general user has all interferers further away than desired BS.

In the MIA scheme, the worst-case user has two cooperating BSs at the same distance whereas

the two cooperating BSs of general user are at i.i.d. distances. Hence the worst-case user benefit

represents the best possible coverage improvement due to MIA.

Fig. 2 shows a plot of the rate RN against the delay constraint N for a cellular network with

λ = 1 at α = 3. While the ps(N) curves in Fig. 1 show the benefit due to MIA only, the

RN curves in Fig. 2 show the benefits of both MIA and rateless coding. The effect of rateless

coding is captured in the RN expression by the term E [T ] (for fixed rate coding, this term is
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Fig. 1. The success probability ps(N) as a function of the delay constraint N from (6) and (16). GU-General user and WU-Worst

user. For MIA, the dotted line is simulation based and the solid lines are obtained from the analytical results.
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10 log10 N
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1.5
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Fig. 2. The typical user rate RN as a function of N from (7) and (17).

fixed to N). The rate gain gr is defined as the ratio of the maximal rate maxN RN with MIA

to that with NC. The RN curves for the worst-case user show a rate gain gr of 6.12, while for

the general user curves, the rate gain gr is 2.6. Since rateless codes adapt to the instantaneous

channel conditions, the replacement of an interfering BS by a cooperating BS leads to a big

decrease in E [T ] (more for worst-case user) yielding a higher rate as per (7). The rate benefit of

MIA is further enhanced by using the adaptive rateless codes. Although not considered in this

work, for users on the Voronoi edges of the PPP Φ, i.e., users equidistant from 2 BSs, the rate

gain gr is expected to be between 2.6 and 6.12.
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Cost of NOMA: One cost of NOMA is the inter-codeword interference cancellation module

at the receiver. Since M = 2 codewords are multiplexed by the NOMA scheme in this paper,

the hardware complexity needed to distinguish the two codewords at the receiver is affordable.

A second cost is the excess bandwidth factor β needed for NOMA. β = 2 is a reasonable

assumption for M = 2. (Note that orthogonal frequency bands also require β = 2). To have a

net gain in the cost-benefit tradeoff of the new CoMP scheme, the rate gain gr should satisfy

gr > β. Both the general and worst-case (also cell edge) users satisfy gr > β and thus have a

net gain.

V. CONCLUSION

We introduced a new CoMP scheme leveraging the effects of spectral efficiency boosting MI

accumulation and the channel adaptivity of rateless codes. The resulting performance improve-

ments are illustrated for a single tier cellular downlink for representative network scenarios. The

users closer to the interfering BSs experience the most coverage and rate benefits. The presented

CoMP scheme can be incorporated into a 2-tier (or M-tier) cellular model. For a user, the nearest

BS in each tier performs joint transmission of the two codewords.
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