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Abstract—This paper investigates the secrecy outage probability in
the downlink when the target user equipment (UE) is selected based
on an ordering metric. UEs are positioned randomly according to a
Poisson point process (PPP) in the presence of independently acting
eavesdroppers (EDs), the locations of which are again modeled as
a PPP. We propose the use of a transmit antenna selection (TAS)
scheme at the base station (BS) to enhance secrecy performance and
consider two metrics to order the UEs: one based on long-term average
channel gain information from the BS to the UEs, and the other based
on instantaneous channel gains. We derive closed form expressions
for the secrecy outage probability subject to each of these ordering
policies and verify our calculations through Monte Carlo simulations.
Our results show that while TAS yields a performance improvement
relative to single-antenna systems, the secrecy outage probability for
TAS systems actually increases with the path loss exponent.

I. INTRODUCTION

Physical layer (PHY) security has gained a lot of interest since
Wyner’s seminal paper [1]. The basic principle of PHY security is
to exploit the inherent randomness of noise and wireless channels
to ensure the confidentiality of messages against any eavesdropper
(ED) regardless of its computing power [2]. Compared to crypto-
graphic solutions, PHY security can offer major advantages, such
as “provable” security, no need for key management/distribution,
and superior scalability for next-generation networks [3].

Recently, studies have considered information theoretic security
over wireless channels, covering such topics as cooperative relay
and jammer networks, buffer-aided relay networks, multiple-input
multiple-output communication (MIMO) with distributed beam-
forming, full-duplex networks, and cognitive radio networks [4]–
[8]. However, all of these contributions focused on a small number
of nodes and assumed the locations of EDs are known. In some
cases, it may be impractical to estimate ED locations.

In the last decade, random graph and stochastic geometry for-
malisms have been employed extensively to model random node
locations in wireless networks [9], [10]. More recently, these
techniques have been applied to study the impact of random ED
locations on secrecy performance [11]–[15]. Without any prior
knowledge, the locations of EDs can be modeled as a Poisson point
process (PPP). In [11], the average secrecy throughput of a network
of multiple Poisson distributed legitimate node pairs operating in
the presence of a Poisson field of EDs was analyzed. Following
this work, MIMO beamforming was applied to enhance secrecy
performance [12], [13]. In [16], ED collusion was modeled and
achievable secrecy rates were analyzed based on the concept of
intrinsically secure graphs.
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In this paper, we take research on secrecy in random spatial
networks one step further by considering the downlink of a cellular
network (or similar system with a star topology) with Poisson
distributed UEs and EDs, and analyze the secrecy outage probability
for two different UE selection policies: one based on long-term
average base station (BS)-to-UE channel gain information (equiva-
lently BS-UE distance) ordering only, and one based on an ordering
of instantaneous channel gains. We assume the BS employs transmit
antenna selection (TAS) to improve secrecy performance. For each
policy, we obtain a closed-form expression for the secrecy outage
probability. Interestingly, our results show that while TAS yields
a performance improvement relative to single-antenna systems, the
secrecy outage probability for TAS systems actually increases with
the path loss exponent for both policies. We also quantify the
deterioration in secrecy performance with increasing ordinal UE
index, i.e., cycling through the ordered list of UEs from best to
worst.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider the secure transmission from the BS to an ordered
UE in R2. The BS is equipped with K antennas, which it uses to
perform TAS in order to maximize the instantaneous SNR at the
intended UE. UEs and EDs are equipped with a single antenna each,
which performs in a half-duplex mode. Without loss of generality,
we locate the BS at the origin in R2. We model the locations of the
UEs and EDs as homogeneous PPPs in the plane – denoted by ΦE

and ΦU , respectively – with intensities ρE and ρU . In our work,
we consider independently acting eavesdropping, which means that
EDs cannot share their received information.

All channels are assumed to undergo path loss and independent
Rayleigh fading. Hence, the coefficient modeling the channel
between nodes i and j can be decomposed as gij = hijd

−α/2
ij ,

where α and dij denote the path loss exponent and the distance
between the two nodes, respectively1. The fading coefficient hij is
modeled as a zero-mean complex Gaussian random variable with
unit variance. Therefore, the corresponding channel gains |gij |2
are independently exponentially distributed with mean λij = d−α

ij .
We assume that the channels are quasi-static, so that the channel
coefficients remain unchanged during several packet transmissions
but independently vary from one coherence time interval to another.

B. Secrecy Outage Probability

We define the secrecy outage probability based on the classical
wireless wiretap theory but with multiple EDs and an ordered UE

1We set the subscripts i and j to be elements in the set {B,U,E} in order to
denote transmissions from the BS, UEs and EDs, respectively. For example, gUE1

denotes the channel coefficient between the UE and the first ED in ΦE .
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(see the next section for details of the ordering policies). We assume
that the channel state information (CSI) between the BS and the UE
is known by the BS2. Therefore, the BS is able to send a symbol
xs to the nth UE from the kth selected antenna in the tth time slot.
At the same time, the EDs receive this signal as well. The received
signal at the nth UE can be written as

yBkUn(t) =
√
PBhBkUn(t)xs(t) + vn(t), (1)

and the signal intercepted by eavesdropper Ee can be written as

yBkEe(t) =
√
PBhBkEe(t)xs(t) + vn(t), (2)

where PB denotes the BS transmit power and vn denotes white
Gaussian noise with power σ2

n. For notational convenience, the
time index t is ignored below due to the quasi static channel
assumption. In order to design the network parameters to achieve
the maximum level of secrecy, we consider the worst-case scenario
in which the EDs know the BS-ED CSI. According to (1) and (2),
and incorporating the TAS principle at the BS, the end-to-end SNR
at the nth UE and the worst-case eavesdropper can be obtained as

γBUn =
PB
σ2
n

max
k∈(1...K)

(
|hBkUn |

2
)

dαBUn
and γBE∗ =

PB
σ2
n

max
e∈Φ

(
|hB∗Ee |2

dαBEe

)
,

(3)
respectively, where B∗ = arg max

k∈(1...K)

(
|hBkUn |2

)
. It follows that

the relevant end-to-end capacities from the BS to the nth UE and
the BS to the worst-case E∗ can be written as

CBUn = log2

1 +
PB
σ2
n

max
k∈(1...K)

(
|hBkUn |

2
)

dαBUn

 ,

CUE∗ = log2

(
1 +

PB
σ2
n

max
e∈ΦE

(
|hB∗Ee |2

dαBEe

))
.

(4)

The secrecy outage probability for the nth UE is given by [17]3

Pso = P([CBUn − CBE∗ ]
+ < ϵ) ≃ P

((
γBUn
γBE∗

)
< β

)
(5)

where [x]+ = max(x, 0), P(·) denotes probability, ϵ denotes the
target secrecy rate, and β = 2ϵ denotes the target secrecy SNR.

III. ANALYSIS FOR TWO UE ORDERING POLICIES

In this section, we investigate two ordering policies for UE
selection. One is the based on the distance between the BS and
the UE (dBU ), the other one is the based on channel gain, i.e., the
ratio (|hB∗U |2/dαBU ).

A. Policy I: Ordering by Distance

We assume all channels are i.i.d. Consequently, the conditional
cumulative distribution function (CDF) and probability density
function (PDF) of γBUn are

FγBUn (x | dBUn) =
(
1− e−xd

α
BUn

)K
=

K∑
k=0

CkK(−1)ke−kxd
α
BUn ,

fγBUn (x | dBUn) =
K∑
k=1

CkK(−1)k+1kdαBUne
−kxdαBUn ,

(6)

2This can be achieved by feeding back CSI from the UE to the BS directly.
3The approximation in (5) is a standard assumption for systems operating in

the high SNR region [17].

respectively, where Ck
K = K!/[k!(K − k)!] is the binomial

coefficient. Then, the CDF of γBE∗ can be calculated as

FγBE∗ (y) = P
(
max
e∈ΦE

(
|hB∗Ee |2

dαBEe

)
< y

)
(a)
= EΦE

 ∏
e∈ΦE

P
(
|hB∗Ee |

2 < ydαBEe | ΦE
)

(b)
= exp

(
−ρE

∫ 2π

0

∫ ∞

0

r
(
e−yr

α
)
dr dθ

)
= exp

(
−2πρE

αy
2
α

Γ

(
2

α

))
,

(7)

where Γ(·) is the gamma function; (a) follows from the indepen-
dence of {|hB∗Ee |2;Ee ∈ Φ}; and (b) holds by the probability
generating functional lemma [18]. The PDF of γBE∗ is

fγBE∗ (y) =
2πρEΓ

(
2
α
+ 1
)

αy
2
α
+1

exp

(
−
πρEΓ

(
2
α
+ 1
)

y
2
α

)
. (8)

According to the definition of secrecy outage probability (5), and
using (6) and (7), the conditional secrecy outage probability given
the BS-UE distance for UE ordering policy I can be written as

F (I)
so (β | dBUn) = 1−

∫ ∞

0

fγBUn (x | dBUn)FγBE∗

(
x

β

)
dx

= 1−
K∑
i=1

CiK(−1)i+1

√
pq

2
p+2q−3

2 π
p+2q

2
−1

×Gp+2q,0
0,p+2q

(
a2qk b

p

pp4qq2q

∣∣∣∣ −
0, 1

p
, ..., p−1

p
, 1
2q
, 2
2q
, ..., 1

)
,

(9)

where Gm,n
s,t

(
z

∣∣∣∣ u1, . . . , us

v1, . . . , vt

)
is the Meijer G function, α = p/q

with p, q ∈ Z+, a = kdαBUn
, and b = πρEΓ(

2
α + 1)β2/α.

All that remains is to average over the BS-UE distance. The
statistics of the nth nearest neighbor in a PPP are well known.
Using these results, we have that the PDF of dBUn is [19]

fdBUn (dBUn) = e−ρUπd
2
BUn

2ρnUπ
nd2n−1

BUn

Γ(n)
. (10)

Finally, by using (9) and (10), we arrive at the expression for the
secrecy outage probability given by

P (I)
so (β) =

∫ ∞

0

F (I)
so (β | dBUn)fdBUn (dBUn) ddBUn

=



1−
∑K
k=1 C

k
K

(−1)k+1

Γ(n)
G2,1

0,0

(
βAek
ρUπ

∣∣∣∣ 1− n
1, 0

)
, α = 2,

1−
∑K
k=1 C

k
K

(−1)k+12n−1(βk)
1
4

√
ρEΓ( 2

α
+1)

πΓ(n)
√
ρU

×G3,2
0,0

(
βA2

ek

ρUπ

∣∣∣∣ 1
4
− n

2
, 3
4
− n

2
3
4
, 1
4
,− 1

4

)
, α = 4,

(11)

where Ae = πρEΓ
(
2
α + 1

)
.

B. Policy II: Ordering by Channel Gain
For this ordering policy, let

xn =
dαBUn

max
k∈(1...K)

(|hBkUn |2)
(12)

and define the set Ψ = {xn, n ∈ N}. The following lemmata allow
us to make progress based on these definitions.



3

Lemma 2: The set Ψ is a PPP with intensity function given by

ρΨ(ψ) =

K−1∑
l=0

ClK(−1)l
2πρUKψ

2
α
−1Γ( 2

α
+ 1)

α(l + 1)
2
α
+1

. (13)

Proof: See Appendix I.
Lemma 3: The PDF of xn is given by

fxn(x) =
2(Aux

2
α )n exp

(
−Aux

2
α

)
αxΓ(n)

, (14)

where Au =
∑K−1

l=0 Cl
K(−1)l

πρUKΓ( 2
α+1)

(l+1)
2
α

+1
, and the CDF of 1/xn

is given by

F 1
xn

(x) =
Γ(n,Aux

2
α )

Γ(n)
, (15)

where Γ(· , ·) is the upper incomplete gamma function.
Proof: See Appendix II.
Now, by using (8) and (15), we can obtain the secrecy outage

probability for the second UE ordering policy as follows:

P (II)
so (β) = 1−

∫ ∞

0

F 1
xn

(βy)fγBE∗ (y) dy = 1−

(
Auβ

− 2
α

Auβ
− 2
α +Ae

)n
.

(16)

IV. SIMULATIONS RESULTS

Here, we provide simulation results to verify our analysis. In
the simulations, we assume the noise variance σ2

n = 1, and the
transmission-power-to-noise ratio PB/σ

2
n = 50 dB. The simulation

results are obtained by averaging over 105 independent Monte Carlo
trials. The single-antenna case is our benchmark.

Fig. 1 verifies the secrecy outage probability expressions given
in (11) for the nearest UE (n = 1) for ordering policy I. The path
loss exponents considered are α = 2 and 4, and we let β = 1 and
ρU = 0.5 m−2. Both the simulation and the theoretical results are
presented, which are shown to match perfectly. Furthermore, it is
clear that the secrecy outage probability decreases as the number of
transmit antennas increases for both cases. For the single-antenna
case, the secrecy outage probability decreases when the path loss
exponent increases. Physically, this behavior implies that cluttered
environments exhibiting high propagation losses are more beneficial
for secrecy, which was also confirmed in [16]. However, with TAS,
propagation losses have a deleterious effect on the diversity offered
by selection. This effect outweighs the benefit that such losses
provide in terms of secrecy. So as the path loss exponent increases,
the secrecy outage probability also increases when TAS is used.

Results corresponding to the second UE ordering are illustrated
in Fig. 2. Here, we let n = 1, β = 1 and ρU = 0.5 m−2.
Again, the theoretical results (generated with the help of (16)) are
well matched to the simulation results. The expected trends are
observed in this figure: the secrecy outage probability increases
with the intensity of EDs and decreases with increasing numbers of
transmit antennas. Importantly, we see from Fig. 2 that performance
is independent of the path loss exponent for K = 1. However, we
also observe the same trends noted above regarding the worsening
of performance with increasing path loss exponent for K > 1.

Fig. 3 shows the secrecy outage probability versus the different
ordered UE index for both policy I and policy II, where ρE = 0.01
m−2 and ρU = 0.5 m−2. We can see that with increasing indices
(i.e., second, third, fourth best and so on), the secrecy outage
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Fig. 1. Theoretical vs. numerical secrecy outage probabilities for UE
ordering policy I, where n = 1, β = 1 and ρU = 0.5 m−2.
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Fig. 2. Theoretical vs. numerical secrecy outage probabilities for UE
ordering policy II, where n = 1, β = 1 and ρU = 0.5 m−2.

probability increases for both policies, as expected. When the
densities of EDs and UEs are known or can be estimated, this
result enables us to determine how many UEs (for a given ordering
policy) can communicate securely via the BS4 by using TAS. It is
clear that the secrecy outage probability corresponding to policy II
is lower than that related to policy I, again as one might expect. In
practice, however, policy II requires knowledge of the instantaneous
BS-UE channel gains, which cannot always be estimated accurately.
Policy I, however, is dependent only on distance, or equivalently
long-term average BS-UE channel gains. Such information can be
more easily obtained at the BS in practice.

V. CONCLUSION

In this paper, we proposed a method of enhancing secrecy in
wireless networks with randomly located EDs and UEs. Two UE

4Here, security is measured in terms of the satisfaction of a target secrecy
outage probability threshold, i.e., a 1% chance of secrecy outage.
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Fig. 3. The comparison of secrecy outage probabilities for the different UE
ordinal indices, where ρE = 0.01, ρU = 0.5 m−2.

selection policies were analyzed: one requires only distance or long-
term BS-UE channel gain information, whereas the other requires
knowledge of instantaneous BS-UE SNR. TAS was incorporated
into the model, and closed-form expressions for the secrecy outage
probability for each ordering scheme were presented. These results
were been confirmed by numerical simulations. Our results show
that while TAS yields a performance improvement relative to
single-antenna systems, the secrecy outage probability for TAS
systems actually increases with the path loss exponent.

APPENDIX I

Firstly, based on the displacement theorem and mapping theorem
for point process transformations [20], Ψ is also a PPP, because the
point process of Ψ can be obtained from the PPP of ϕU = {dBUn}
by a deterministic mapping and independent displacement. Then
the intensity function of Λ = {λ = dαBUn

} can be calculated from
E[ΦU ([0, x))] = ρUπx

2 by mapping theorem

ρΛ(λ) =
2ρUπλ

2
α
−1

α
. (17)

We let Y = max
k∈(1...K)

(
|hBkUn |2

)
, and because all channels from

each antenna at the BS are assumed to be i.i.d., the CDF of Y can
be written as FY (y) = (1− ey)K . Next, we use the displacement
theorem to determine the intensity function Ψ. One UE of ΦU at
dBUn gets displaced to xn = λ/Y ; therefore,

P(dBUn/Y < ψ) = 1− FY (λ/ψ), (18)

and the displacement kernel follows as

ρ(λ, ψ) =
d

dy
(1− FY (λ/ψ)) =

K−1∑
l=0

ClK(−1)l
λK

ψ2
e
− (l+1)λ

ψ . (19)

Finally, by using the displacement theorem and (17), the intensity
function of Ψ can be obtained as

ρΨ(ψ) =

∫ ∞

0

ρΛ(λ)ρ(λ, ψ) dλ =

K−1∑
l=0

ClK(−1)l
2πρUKψ

2
α
−1Γ( 2

α
+ 1)

α(l + 1)
2
α
+1

.

(20)

APPENDIX II

According to [20], the complementary CDF of xn =
dαBUn

max
k∈(1...K)

(|hBkUn |2)
is the probability that there are less than n nodes

closer than x, which can be derived by using (20) to be

Fxn(x) = P(xn < x) = 1− P(Ψ[0, x) < n)

= 1−
n−1∑
i=0

e−
∫ x
0 ρΨ(ψ) dψ (

∫ x
0
ρΨ(ψ) dψ)

i

i!

= 1−
n−1∑
i=0

e−Aux
2
α (Auz

2
α )i

i!
.

(21)

The PDF of xn, as given in (15), follows by differentiating (21).
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