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Packet Throughput Analysis of Static and

Dynamic TDD in Small Cell Networks
Howard H. Yang, Giovanni Geraci, Yi Zhong, and Tony Q. S. Quek

Abstract—We develop an analytical framework for the perfor-
mance comparison of small cell networks operating under static
time division duplexing (S-TDD) and dynamic TDD (D-TDD).
While in S-TDD downlink/uplink (DL/UL) cell transmissions are
synchronized, in D-TDD each cell dynamically allocates resources
to the most demanding direction. By leveraging stochastic geom-
etry and queuing theory, we derive closed-form expressions for
the UL and DL packet throughput, also capturing the impact
of random traffic arrivals and packet retransmissions. Through
our analysis, which is validated via simulations, we confirm that
D-TDD outperforms S-TDD in DL, with the vice versa occurring
in UL, since asymmetric transmissions reduce DL interference at
the expense of an increased UL interference. We also find that in
asymmetric scenarios, where most of the traffic is in DL, D-TDD
provides a DL packet throughput gain by better controlling the
queuing delay, and that such gain vanishes in the light-traffic
regime.

Index Terms—Dynamic time division duplexing, small cells,
packet throughput, stochastic geometry, queuing theory.

I. INTRODUCTION

As well as continuously increasing, the wireless data de-

mand is shifting from symmetric downlink/uplink (DL/UL)

capacity requirements, e.g., for voice traffic, to strongly asym-

metric and fluctuating activities, e.g., video streaming or file

uploading [1]. It is becoming crucial to allocate spectrum

resources between the UL and the DL based on immediate

traffic needs, and new features are being incorporated into

Long Term Evolution (LTE) to allow for a more flexible use of

radio resources, such as the enhanced Interference Mitigation

and Traffic Adaptation (eIMTA) [2]. This flexible DL/UL

capacity split, commonly referred to as dynamic time division

duplexing (D-TDD), is also expected to be one of the operation

modes for fifth-generation (5G) ultra-dense networks [3], [4].

Unlike conventional static TDD (S-TDD), which requires

all DL/UL cell activities to be synchronized, D-TDD allows

each cell to individually configure its subframe to accomodate

whichever link direction needs it the most [5]. As a result,

D-TDD may provide higher spectrum utilization and reduced

latency, and it is particularly appealing for network scenarios

with significant traffic fluctuation. On the other hand, D-

TDD suffers additional inter-cell interference introduced by
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asynchronous UL/DL transmissions, and it may not be suitable

for all small cell deployment configurations [6].

System-level comparisons between S-TDD and D-TDD

have been performed, among others, in terms of coverage

probability [7], achievable rate [8], and energy efficiency

[9], showing the gains attainable by D-TDD. In particular,

significant improvements have been demonstrated in the pres-

ence of interference mitigation techniques, e.g., power control,

cell clustering, or interference cancellation [10]. While these

previous works provide a basic assessment of the performance

of D-TDD vs. S-TDD, the full-buffer assumption commonly

used fails to capture the crucial effect of queuing delay, in turn

affected by random packet arrivals and retransmissions [11].

In this paper, we overcome such limitation by adopting the

mean packet throughput as the performance metric – capturing

the effect of both transmission and queuing delay – and we

propose a stochastic geometry framework that quantifies the

impact of various network parameters. In particular, we model

the locations of small cell access points (SAPs) and user equip-

ment (UEs) as independent Poisson point processes (PPPs), the

UL/DL traffic arrivals as independent Bernoulli processes [11],

and account for the retransmission of unsuccessfully delivered

packets. We derive accurate closed-form expressions for the

mean packet throughput under S-TDD and D-TDD, allowing

to compare them and to draw insightful conclusions.

II. SYSTEM MODEL

A. Network Topology and Scheduling

We consider a small cell network that consists of SAPs

and UEs. The spatial locations of SAPs and UEs follow

independent PPPs Φs and Φu, with spatial densities λs and

λu, respectively. All SAPs and UEs are equipped with a single

antenna, and transmit with power Pst and Put, respectively.

The channels between any pair of nodes are modeled as

independent and identically distributed (i.i.d.) and quasi-static.

We assume each channel to be narrowband and affected by two

attenuation components, namely small scale Rayleigh fading,

and large-scale path loss.1 Furthermore, UEs associate to the

SAPs that provides the largest average received power. Since

the association policy can result in multiple UEs associating

to one SAP, we limit the maximum number of UEs served by

each SAP (denoted by Ns) to Ks, and assume that each SAP

randomly select one of its served UEs at each time slot.

1The results obtained in this paper through the machinery of stochastic
geometry can be extended to account for the presence of shadowing [12].
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B. Traffic Model

We use a discrete time queuing system to model the

traffic profile. In particular, the time axis is segmented into

a sequence of equal intervals, referred to as time slots. We

assume that all queuing activities, i.e., packet arrivals and

departures, take place around the slot boundaries. Specifically,

at the n-th time slot, a potential packet departure may occur

in the interval (n−, n), and a potential packet arrival may

happen in the interval (n, n+). In other words, departures

occur immediately before slot boundaries, whereas arrivals

occur immediately after slot boundaries.

For a generic UE, we model its UL/DL packet arrivals as

independent Bernoulli processes with rates ξU, ξD ∈ [0, 1],
respectively, representing the probability an arrival occurs

in a time slot [13]. Moreover, we assume that each node

accumulates all incoming packets in an infinite-size buffer.

C. Radio Access

We consider two TDD modes of operation for radio access,

i.e., S-TDD and D-TDD, described as follows [5].

1) S-TDD: At each time slot, all SAPs transmit either in

DL or in UL with probabilities pS and 1− pS, respectively.

2) D-TDD: SAPs independently schedule their transmis-

sions. In a given time slot, a typical SAP transmits in DL

(resp. UL) with probability pD (resp. 1− pD).

III. ANALYSIS

A. Preliminaries

1) Signal-to-interference ratio (SIR): Let ζx,t ∈ {0, 1} be

an indicator showing whether a node located at x ∈ Φ ,

Φs ∪Φu is transmitting at time slot t (ζx,t = 1) or not (ζx,t =
0). By the Slivyark’s theorem, we can focus on a typical UE

located at the origin and served by BS x0. In an interference-

limited network, the effect of thermal noise can be neglected,

and the received DL SIR under S-TDD and D-TDD can be

respectively written as

γD
S,t =

Psthx0‖x0‖
−α

∑

x∈Φs\x0

Pstζx,thx

‖x‖α

, (1)

γD
D,t =

Psthx0‖x0‖
−α

∑

x∈Φs\x0

Pstζx,thx

‖x‖α +
∑

z∈Φu

Putζz,thz

‖z‖α

. (2)

Similarly, the UL SIR under S-TDD and D-TDD received by

a typical SAP from UE z0 can be respectively expressed as

γU
S,t =

Puthz0‖z0‖
−α

∑

z∈Φu\z0

Pstζz,thz

‖z‖α

, (3)

γU
D,t =

Puthz0‖z0‖
−α

∑

z∈Φu\z0

Putζz,thz

‖z‖α +
∑

x∈Φs

Pstζx,thx

‖x‖α

. (4)

2) Transmission and Success Probability: During each time

slot, every node with a non-empty buffer sends out a packet

from the head of its queue. If the received SIR exceeds

a predefined threshold, the transmission is successful and

the packet can be removed from the queue; otherwise, the

transmission fails and the packet remains in the buffer. The

success probability µt is therefore defined as the probability

that the received SIR γt is above a certain threshold θ, i.e.,

µt = P (γt > θ) . (5)

We note that the success probability can be regarded equiva-

lently as the service rate of the queuing system.

3) Mean Packet Throughput: We employ packet through-

put, i.e., the number of successfully transmitted packets per

time slot, as our performance metric. A formal definition is

given as follows.

Definition 1: Let Ax(t) be the number of packets arrived

at a typical transmitter x within period [0, t], and Di,x be the

number of time slots between the arrival of the i-th packet and

its successful delivery. The mean packet throughput is defined

as

T , lim
R→∞

∑

x∈Φ∩B(0,R) lim
t→∞

Ax(t)
∑Ax(t)

i=1 Di,x
∑

x∈Φ 1{x∈B(0,R)}
. (6)

Note that Di,x in (6) represents the number of time slots

required to successfully deliver the i-th packet, and its value is

affected by: (i) queueing delay, caused by other accumulated

unsent packets, and (ii) transmission delay, due to link failure

and retransmission. By averaging over all nodes, (6) provides

information on the packet throughput across the network.

B. Packet Throughput Analysis

This section details the main results of our work. We first

introduce two lemmas to facilitate the analysis.

Lemma 1: Given the number of served UEs Ns, the arrival

rate ξx, and the service rate µ, the mean packet throughput

at a typical SAP is

T =

{

µ/Ns − ξx
1− ξx

}

+

, x ∈ {U,D}, (7)

and its idle probability is given by

τ0 = {1−Nsξx/µ}+ , (8)

where {x}+ , max{x, 0}.

Proof: See Appendix A for a sketch of the proof.

Lemma 2: The probability mass function (PMF) of the

number of served UEs per SAP, Ns, is given by

fNs(i) =











ηηΓ(i+η)ρ−i

i!Γ(η)( 1
ρ
+η)i+η if i ≤ Ks − 1,

∑∞
j=Ks

ηηΓ(j+η)ρ−j

j!Γ(η)( 1
ρ
+η)

j+η if i = Ks

(9)

where ρ = λs/λu, η = 3.5, and Γ(·) is the Gamma function.

Proof: See [12] for a detailed proof.

The average packet throughput under S-TDD can then be

derived as follows.



3

Theorem 1: The mean UL and DL packet throughput under

S-TDD can be respectively approximated as

T U
S ≈

Ks
∑

i=1

fNs(i)

1−ξU

{

1−pS
i

− ξU

(

1+
E[Ns]V(θ, α)

i

)}

+

, (10)

T D
S ≈

Ks
∑

i=1

fNs(i)

1−ξD

{

pS
i

− ξD

(

1+
E[Ns]Z(θ, α)

i

)}

+

(11)

where V(θ, α) and Z (θ, α) are given as follows

V (θ, α) =
2πθ

2
α

α sin(2π
α
)
, Z (θ, α) =

∫ ∞

θ
−

2
α

θ
2
α du

1 + u
α
2
. (12)

Proof: See Appendix B for a sketch of the proof.

In regard to D-TDD, we assume that each cell individually

allocates its DL time fraction pD to minimize the average

DL/UL traffic demand [10], i.e.,

pD = arg min
p∈[0,1]

∣

∣

∣

∣

ξD
p

−
ξU

1− p

∣

∣

∣

∣

. (13)

Solving (13) yields pD = ξD/(ξU + ξD) for all SAPs, and the

mean D-TDD packet throughput can be derived as follows.

Theorem 2: The mean UL and DL packet throughput under

D-TDD can be respectively approximated as

T U
D ≈

Ks
∑

k=1

(1− pD) · fNs(k) ·

{ µU

k
− ξU

1− ξU

}

+

, (14)

T D
D ≈

Ks
∑

k=1

pD · fNs(k) ·

{ µD

k
− ξD

1− ξD

}

+

, (15)

with pD as in (13), and where µD and µU are given as follows

µU =
ξU+ξD −

[

ξ2DZ(θ, α) + ξ2UV(θ, α)
]

E[Ns]

ξU+ξD − ξ2DE[Ns]
[

Z(θ, α)− V(θ, α) Pst

Put

] , (16)

µD =
ξU+ξD −

[

ξ2DZ(θ, α) + ξ2UV(θ, α)
]

E[Ns]

ξD+ξU − ξ2UE[Ns]V(θ, α)
(

1− Put

Pst

) . (17)

Proof: See Appendix C for a sketch of the proof.

IV. NUMERICAL RESULTS

Unless otherwise stated, we adopt the following system

parameters [12]: λs = 10−4m−2, λu = 10−3m−2, Pst =
23 dBm, Put = 17 dBm, Ks = 3, θ = 0 dB, and α = 3.8.

Moreover, we set the DL time portion for both S-TDD and

D-TDD to be the same, i.e., pS = pD, and as per (13).

In Fig. 1, we depict the mean throughput per UE, expressed

in packets per time slot. In this figure, the UL arrival rate is

kept constant as ξU = 0.02, and the DL arrival rate is varied to

show its effect. The figure shows that analytical results (dashed

lines) and simulations (solid lines) well match, validating

Theorem 1 and Theorem 2. Several observations are due: (i)
as the DL arrival rate grows from low to medium values, the

DL throughput increases since a larger portion of time slots

is allocated to DL transmissions; (ii) as the DL arrival rate

exceeds a certain value, many packets start accumulating in

the buffer, and the queuing delay starts degrading the system

performance, yielding a decreasing throughput; (iii) since the
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Fig. 1. Mean packet throughput per UE vs. DL/UL arrival rates ratio:
analytical results (dashed lines) and simulations (solid lines).
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Fig. 2. Mean packet throughput per UE versus SAP/UE density ratio.

UL arrival rate is fixed, increasing the DL arrival rate causes

the UL throughput to decrease; and (iv) consistently with

[10], D-TDD outperforms S-TDD in DL (especially when DL

traffic is prevalent), and vice versa in UL, since asymmetric

transmissions reduce DL interference at the expense of an

increased UL interference.

Fig. 2 illustrates the mean packet throughput per UE, ob-

tained via Theorems 1 and 2, for two different traffic statistics,

namely, (ξU = 0.005, ξD = 0.01) and (ξU = 0.05, ξD = 0.1),

respectively labeled as light and medium traffic. In this figure,

the UE density is kept constant as λu = 10−3m−2 and

the SAP density is varied to show its effect. Fig. 2 shows

that, although both S-TDD and D-TDD benefit from cell

densification, their relative performance varies with the traffic

conditions, namely: (i) in the presence of light traffic, i.e.,

small packet arrival rates, S-TDD and D-TDD exhibit very

similar throughput, since nodes have short queues, and all

packets can be transmitted quickly irrespective of the TDD

mode; and (ii) in a medium-traffic regime, the effect of the
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TDD mode is more pronounced, especially in DL where D-

TDD outperforms S-TDD by adaptively following the traffic

fluctuations, and thus controlling the queuing delay.

V. CONCLUSION

We evaluated the performance of small cell deployments

under static and dynamic TDD. For networks where topology,

traffic arrivals, and scheduling are random, we analyzed the

packet throughput also accounting for retransmissions and

queuing delay. We confirmed that S-TDD outperforms D-TDD

in the UL, while the opposite is true for DL operations. We

also showed that the gain provided by D-TDD in asymmetric,

DL-dominated scenarios, is more significant under moderate

traffic, whereas it vanishes in the light-traffic regime.

While our emphasis was on the impact of the traffic pattern

and queuing delay on the packet throughput, we note that the

latter is also affected by the propagation environment and by

the deployment scenario. Analyzing the performance of both

TDD modes in networks with line-of-sight (LoS)-non-LoS

transitions, and under a more realistic Poisson cluster process

(PCP) model is regarded as an important research direction.

APPENDIX

A. Sketch of Proof of Lemma 1

A generic queue in the system is equivalent to a Geo/G/1

queue with arrival ξx and service rate µ/Ns. Denoting πx(j)
the probability of having j packets in the steady state, the

balance equation can be written as

πx(0)ξx = πx(1)(1− ξx)
µ

Ns
⇒ πx(1) =

Nξx
1− ξx

πx(0)

...

πx(j) =
Nsξ

j
x (Ns − µ)

j−1

(1− ξx)jµj
πx(0). (18)

We note that πx(j) can be obtained from
∑∞

j=0 πx(j) = 1.

As such, the mean packet throughput can be derived as

TΦ =
ξx

∑∞
j=0 πx(j) · j

, (19)

and the system idle probability is given by τ0 = πx(0).

B. Sketch of Proof of Theorem 1

Let us decompose the PPP Φs into Ks tiers, where the

k-th tier consists of SAPs with k associated UEs. As such,

the location of k-th tier SAPs can be approximated by an

independent PPP with spatial density λsfNs(k). Next, the

probability of a k-th tier SAP being active can be approximated

as P(ζk = 1) ≈ kξD
pSµ

D
S

. The approximated service rate at the

typical UE is then obtained from (1) as

µD
S ≈ E





Ks
∏

k=1

exp





∑

x∈Φk
s \{x0}

−
ζxhxθ‖x0‖

α

‖x‖α









=

∫ ∞

0

exp

(

−λsπr
2−λsπr

2 ξD
∑Ks

k=1 kfNs(k)

pSµD
S [Z(θ, α)]−1

)

2πλsrdr

=

(

1 +
E [Ns] ξDZ (θ, α)

pSµD
S

)−1

. (20)

Solving the above equation and employing Lemma 1 yields

µD
S ≈ 1−

E [Ns] ξDZ (θ, α)

pS
, (21)

T D
S =

Ks
∑

k=1

fNs(k) ·

{

pSµ
D
S /k − ξD
1− ξD

}

+

, (22)

with µD
S as in (21). The approximated UL packet throughput

can be derived similarly from (3).

C. Sketch of Proof of Theorem 2

Similarly to Appendix B, by leveraging (2), (4), and

stochastic geometry tools, the service rate of DL/UL D-TDD

transmissions can be respectively approximated as follows

µD
D = E



exp



−θ‖x0‖
α





∑

x∈Φs\{x0}

ζx,thx

‖x‖α
+
∑

z∈Φu

Putζz,thz

Pst‖z‖α













≈

(

1+
pDξDZ(θ, α)

µD
DE[Ns]−1

+
(1−pD)ξUV(θ, α)

µU
DE[Ns]−1

Put

Pst

)−1

, (23)

µU
D≈

(

1+
(1−pD)ξDV(θ, α)

µD
DE[Ns]−1

+
pDξDV(θ, α)

µU
DE[Ns]−1

Pst

Put

)−1

. (24)

The theorem then follows from solving the system of equations

(23) and (24), and applying Lemma 1.
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[3] E. Lähetkangas, K. Pajukoski, J. Vihriälä, G. Berardinelli, M. Laurid-
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