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Abstract—We evaluate and quantify the joint effect of fading
and multiple interferers on the physical-layer (PHY) security of
a system consisted of a base-station (BS), a legitimate user, and
an eavesdropper. To this end, we present a novel closed-form
expression for the secrecy outage probability, which takes into
account the fading characteristics of the wireless environment, the
location and the number of interferers, as well as the transmission
power of the BS and the interference. The results reveal that the
impact of interference should be seriously taken into account
in the design and deployment of a wireless system with PHY
security.

Index Terms—Interference, Secrecy Outage Probability, Phys-
ical layer security.

I. INTRODUCTION

P
hysical layer (PHY) security has received significant at-

tention in the last years, since it can provide reliable

and secure communication by employing the fundamental

characteristics of the transmission medium, such as multi-path

fading [1], [2]. As a result, a great amount of effort was put in

analyzing the performance of such systems. Scanning the open

literature, most of the related works have neglected the impact

of interference and fading on the security performance of

wireless systems. However, in modern heterogeneous wireless

enviroments, interference is an inevitable key factor for the

communication system’s performance [3].

The above mentioned scenarios motivated a general investi-

gation of the effect of interference on the security performance

of wireless systems [4], [5]. Specifically, a scenario where

two independent confidential messages are transmitted to their

respective receivers (RXs), which interfere with each other

was examined in [6]. In this work, the equivocation rate

at the eavesdropper was used as a metric to ensure mutual

information-theoretic secrecy. Furthermore, in [7], the problem

of security in the presence of interference was examined from

a similar point of view, where two transmitters (TXs) sent

two messages to a cognitive RX, who should be able to

decode both messages, and a non-cognitive RX, which is able

to decode only one message, while the other is kept secret.

Moreover, in [8], a system that consisted of a primary TX-

RX pair, as well as a number of secondary transceivers, and

a single eavesdropper, was examined. However, in [8], the

impact of multipath fading was neglected. In [9], the secrecy
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capacity was investigated for a cognitive radio system with

security based on artificial noise, assuming full channel state

information (CSI) knowledge for the legitimate RX’s channel,

and partial CSI for the eavesdropper’s channel. Finally, the

impact of interference on multi-user scheduling transmission

schemes was investigated in [10] and [11]. However, in these

works the fading characteristics of the interference channels

were not taken into consideration.

To the best of the authors’ knowledge, the joint effect

of interference and fading in PHY security has not been

addressed in the open technical literature. Motivated by this,

in this paper, we examine PHY security for a system, where

a TX aims to communicate securely with a legitimate RX, in

the presence of an eavesdropper. The signals transmitted by an

arbitrary number of base-stations (BSs) cause interference in

the signals received by the legitimate RX and the eavesdropper.

All TXs and RXs are assumed to be equipped with a single

antenna. Also, all wireless links are subject to Rayleigh fading,

and statistical CSI is assumed for all channels. To this end,

a closed-form expression for the secrecy outage probability

(SOP) is derived.

II. SYSTEM AND SIGNAL MODEL

We consider the downlink scenario in a wireless network

that consists of a BS, which aims to transmit a confidential

message to a legitimate user, in the presence of an eavesdrop-

per, and M other BSs, which operate in the same frequency

band, i.e., they are interferers. For convenience, in what

follows, we will refer to the BS as Alice (A), the legitimate

user as Bob (B), and the eavesdropper as Eve (E).

The baseband equivalent signals received by B and E can

be respectively obtained as

yB = hBx+

M
∑

i=1

hBixi + nB, (1)

yE = hEx+

M
∑

i=1

hEixi + nE , (2)

where x denotes the transmitted signal by A, and xi denotes

the transmitted signal by the i-th interferer. Also, nB and

nE are zero-mean complex Gaussian random variables (RVs)

that models the additive white Gaussian noise (AWGN), with

power spectral density N0 at both B’s and E’s RXs. Moreover,

the baseband equivalent channel between A and B is denoted

by hB , while the one between A and E by hE . The baseband

equivalent channels between the i-th interferer and B are

denoted by hBi, whereas those between the i-th interferer
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and E by hEi. Due to the distance, dX , between A and

node X ∈ {B,E}, the channel gain can be expressed as

in [12], hX = gX√
1+dα

X

, where gX and α denote the fading

channel and the path loss coefficients, respectively. Similarly,

the channel gain between the i-th interferer and node X is

given by hX i = gXi√
1+dα

Xi

, where X ∈ {B,E}, while gX i

denotes the fading channel coefficient, and dX i denotes the

distance between the i-th interferer and node X . Note that gX
and gX i are zero-mean complex Gaussian RVs with variance

equals 1. Hence, |gX |2 and |gX i|2 follow Rayleigh distribution.

Based on (1) and (2), the instantaneous signal to interference

and noise ratio (SINR) at B and E can be expressed as

γX =

Es

1+dα
X

|gX |2

N0 +
∑M

i=1 |gX i|2 Esi

1+dα
Xi

, (3)

where Es represents the energy of the signal transmitted by

Alice, while Esi represents the energy of the signal transmitted

by the i-th interferer.

III. SECRECY OUTAGE PROBABILITY

In this section, we evaluate the SOP, which is defined as

the probability that the secrecy capacity is lower than a target

secrecy rate, rs, i.e., Po(rs) = Pr (CB − CE ≤ rs) , or

Po(rs) = Pr

(

log2

(

γB + 1

γE + 1

)

≤ rs

)

, (4)

where CB = log2 (γB + 1) and CE = log2 (γE + 1) denote

the capacity of A-B and A-E links, respectively.

Theorem 1. The SOP can be expressed in closed form as

in (5), given at the top of the next page. In (5),

K =
1

γ̃B
2−rs +

1

γ̃E
, (6)

LBi =
Es − (1 + dαB)bBi

(1 + dαB)2
rsbBi

, (7)

LEj =
Es − (1 + dαE)bEj

(1 + dαE)bEj

, (8)

while γ̃B = Es

(1+da
B
)N0

and γ̃E = Es

(1+da
E
)N0

. Also, ΞX (i),

X ∈ {B,E} is defined in [13, Eqs. (8) and (9)]1 and Ei(·) is

the exponential integral function defined in [15, Eq. (5.1.4)].

Proof: Please refer to the Appendix.

Theorem 1 reveals that the SOP does not only depend on

the characteristics of the links between A and B/E, but also on

the characteristics of the links between the interferers and B/E,

as well as the number of interferers. In other words, Theorem

1 quantifies the importance of taking into account the impact

of interference in PHY security.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we evaluate and illustrate the joint effect of

fading and interference on the performance of wireless systems

with PHY security. Unless otherwise stated, we assume that

the distance between Alice and Bob is 2.5 m, while the

distance between Alice and Eve is 25 m. Also, there are

1Note that there is a typo in [13, Eqs. (8)]. The correct expression is
provided in [14].

three interfering BSs, and their normalized distances from Bob

are 10, 20 and 25, whereas their corresponding normalized

distances from Eve are 15, 10 and 5. In all cases, the

target secrecy rate rs is expressed in bit/s/Hz. Moreover, it

is assumed that the signals transmitted by the interferers have

equal energy, denoted by EsI .

Fig. 1 depicts the SOP as a function of Es/N0 for different

values of rs and EsI/N0, and α = 3. We observe that the SOP

decreases as Es/N0 increases. Furthermore, for given Es/N0

and EsI/N0, higher rates lead to higher values of the SOP.

Also, in the examined scenario, in the low Es/N0 regime,

low values for the SOP are achieved if the interferers have

low EsI/N0. On the other hand, in the high Es/N0 regime,

low values of the SOP are achieved if the interferers have

high EsI/N0.

In Fig. 2, the SOP is illustrated as a function of rs for

different values of Es/N0 and α. We observe that, regardless

of the values of Es/N0 and α, as rs increases, the SOP also

increases. Furthermore, for given rs and α, the increase of

Es/N0 results in lower values for the SOP. On the other hand,

the impact of α on the SOP is not as straightforward. For fixed

Es/N0, α = 4 yields the highest SOP in almost all the rs
regime. However, the SOP for α = 2 is higher than for α = 3
when Es/N0 = 40 dB, while the SOP for α = 3 is higher than

for α = 2 when Es/N0 = 20 dB or Es/N0 = 30 dB. This

behavior indicates the dependence of the secrecy performance

on the spatial placement of the elements of the system as well

as the pathloss parameters.

Fig. 3 demonstrates the SOP as a function of EsI/N0 for

different values of rs and Es/N0, and α = 3. Regardless of

the values of EsI/N0 and Es/N0, it can be seen that for given

EsI/N0 and Es/N0, as rs increases, the SOP also increases.

However, for given rs, higher values of Es/N0 lead to a

lower SOP. Moreover, it is observed that as EsI/N0 changes,

the behavior of the SOP is not straightforward. Specifically,

in some cases we observe that as EsI/N0 increases, the

SOP decreases until a certain point, and increases afterwards.

This is expected, because the interferers are, on average,

closer to Eve than to Bob. Therefore, an increase in EsI

is more beneficial to Bob than to Eve. However, as EsI

increases, the energy of the signal received by Bob from Alice

becomes smaller compared to the energy received from the

interferers. Therefore, the capacity of the Alice-Bob and Alice-

Eve channels tend to zero, and so does the secrecy capacity,

leading to higher values of the SOP.

Next, we present the impact of interference on PHY security

for different positions of Eve. We assume that Alice, Bob and

the interferers are placed at fixed locations, while Eve can be

placed at 1 m intervals on a staight line that goes through

Alice and Bob, up to 20 m from Alice. Also, in this scenario,

EsI/N0 = 35 dB and α = 3. In Fig. 4, we observe that, for

a fixed rs, when dE increases, the SOP decreases. Moreover,

we observe that, for fixed Es/N0 and dE , higher values rs
lead to a higher SOP. In all cases, when Eve moves further

from Alice and closer to the interferers, the SOP decreases.

Finally, we investigate the impact of the number of inter-

fering BSs on the SOP. Fig. 5 depicts the SOP as a function

of Es/N0 for different values of rs and M . Also, it was
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Po(rs) = 1− EsN0

2rs(1 + dαB)
e

(

1
γ̃B

+ 1
γ̃E

)

×
M
∑

i=1

M
∑

j=1

ΞB(i)ΞE(j)

bBibEj

(

γ̃Ee
−K

(LEj − 1)(LBi − LEj)
−Kγ̃Ee

LEjKEi (− (LEj + 1)K)

(LBi − LEj)
+
γ̃Ee

LBiKEi (− (LBi + 1)K)

LBi − LEj

− γ̃Ee
LEjKEi (− (LEj + 1)K)

LBi − LEj

+
eKLBiEi (−(1 + LBi)K)

LEj − LBi

−eKLEjEi (−(1 + LEj)K)

LEj − LBi

)

. (5)
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Fig. 1: SOP against Es/N0 for different values of rs and

EsI/N0.
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Fig. 2: SOP against rs for different values of α and Es/N0.

assumed that EsI/N0 = 25dB and α = 3. The distance

between Alice-Bob and Alice-Eve was dB = 1 m and dE = 10
m, respectively. It was assumed that the locations of Alice,

Bob, Eve, and the interfering BSs are collinear, and all other

elements are on the same side of the line, as defined by Alice’s

location. The distance of the first interfering BS from Alice

was 15 m, and each consecutive BS was placed 1 m closer
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Fig. 3: SOP against EsI for different values of rs and Es/N0.
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Fig. 4: SOP against dE for different values of rs and Es/N0.
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Fig. 5: SOP against Es/N0 for different values of M and rs.

to Alice. We observe that, as the value of Es/N0 increases,

the SOP decreases. In the low Es/N0 regime, a lower number

of interferers leads to a lower SOP, but in the high Es/N0

regime, a larger number of interferers leads to a lower SOP.

These results indicate the need to take into consideration the

number of interfering BSs in the evaluation of PHY security

in a wireless system.

APPENDIX

PROOF OF THEOREM 1

The SOP can be expressed as Po(rs) = Pr

(

X
Y

≤ 2rs
)

.
where X = γB + 1 and Y = γE + 1. In order to evaluate

the SOP, we first evaluate the cumulative distribution function

(CDF) of the SNR at Bob and Eve, which can be obtained as

FγX
(x) =

ˆ ∞

N0

FA(yx)fB(y)dy, (9)

where FAX
(x) is the CDF of the RV AX , which is given by

AX = Es

1+da
X

|gX |2, while fBX
(x) is the probability density

function (PDF) of the RV BX , which can be expressed as

BX = N0 +
∑M

i=1 |gX i|2 Esi

1+dα
Xi

. Notice, that AX and BX are

independent RVs.
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Based on [16], AX follows Rayleigh distribution with CDF

given by FAX
(x) = 1 − e−

1+dα
X

Es
x

. Moreover, since BX is a

weighted sum of Rayleigh distributed RVs, it distribution can

be obtained as in [13], and its PDF can be expressed as

fBX
(x) =

M
∑

i=1

ΞX (i)

bX i

e
x−N0
bXi , (10)

where bX i =
Esi

2(1+dα
Xi

) . The expressions for bBi and bEi are

used in the definitions of ΞB(i) and ΞE(i), respectively. Next,

by substituting (10) into (9), and after some simplifications,

we obtain

FγX
(x) = 1−

M
∑

i=1

ΞX (i)

bX i

ˆ ∞

N0

e

(

−
1+dα

X

Es
yx−

y−N0
bXi

)

dy. (11)

By evaluating the integral in (11), we obtain

FγX
(x)=1−

M
∑

i=1

EsΞX (i)e−
(1+dα

X
)N0x

Es

Es + (1 + dα
X
)bX ix

. (12)

Next, the CDFs of X can be derived as FX(x) = FγB
(x−1),

or equivalently

FX(x) = 1−
M
∑

i=1

ΞB(i)Ese
−

(1+dα
B

)N0(x−1)

Es

Es + (1 + dαB)bBi(x− 1)
. (13)

Additionally, the PDF of Y can be derived as fY (x) =
dFγE

(x−1)

dx
which, after some algebraic manipulations, can be

rewritten as

fY (x) = (1 + dαE)e
−

(1+dα
E

)N0(x−1)

Es

×
M
∑

i=1

ΞE(i)

(

EsbEi

(Es + bEi(1 + dαE)(x − 1))
2

+
N0

Es + bEi(1 + dαE)(x− 1)

)

. (14)

Since X and Y are independent RV, the SOP can be

obtained as

Po(rs) =

ˆ ∞

1

FX(2rsx)fY (x)dx. (15)

By substituting (13) and (14) into (15), and after some

mathematical manipulations, we get

Po(rs) = 1−
M
∑

i=1

M
∑

j=1

EsN0ΞB(i)ΞE(j)e

(

1
γ̃B

+ 1
γ̃E

)

2rsbBibEj(1 + dαB)

× (γ̃EI1 + I2) , (16)

where I1 and I2 can be respectively expressed as

I1 =

ˆ ∞

1

e−Ky

(LBi + y) (LEj + y)
2 dy (17)

and

I2 =

ˆ

∞

1

e−Ky

(LBi + y) (LEj + y)
dy. (18)

By setting z = y−1 into (17) and (18) and after some basic

algebraic manipulations and the use of [17, Eq.8.359.1], (17)

can be rewritten as

I1=
e−K

(LEj − 1)(LBi − LEj)
−KeLEjKEi (−(LEj + 1)K)

LBi − LEj

+
eLBiKEi(−(LBi + 1)K)

LBi − LEj

−eLEjKEi(−(LEj + 1)K)

LBi − LEj

(19)

I2=
eKLBiEi(−(1+LBi)K)

LEj − LBi

−eKLEjEi(−(1+LEj)K)

LEj − LBi

. (20)

Finally, by substituting (19) and (20) into (16), we ob-

tain (5). This concludes the proof.
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