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TCM for OFDM-IM
Jinho Choi and Youngwook Ko

Abstract—Orthogonal frequency division multiplexing
(OFDM) with index modulation (IM) is a multicarrier
transmission technique for frequency-selective fading channels.
Although it is energy and spectral efficient, its performance
may not be satisfactory as some active subcarriers can be
suppressed by fading. In this letter, we consider trellis coded
modulation (TCM) for OFDM-IM in order to improve the
detection performance of active subcarriers by increasing the
Hamming distance between index symbols. We devise mapping
rules for TCM for two cases and it is shown that the diversity
order can be improved, which results in a lower probability of
index error.

Index Terms—trellis coded modulation; index modulation;

orthogonal frequency division multiplexing

I. INTRODUCTION

In orthogonal frequency division multiplexing (OFDM), a

subset of subcarriers can be active and their indices are used

to convey additional information bits for index modulation

(IM), which is called OFDM-IM [1] [2]. There have been

various generalizations of OFDM-IM. For example, in [3],

the number of active subcarriers is not fixed to increase the

spectral efficiency. In [4], OFDM-IM is applied to multiple

input multiple output (MIMO) systems. In [5], the optimal

number of active subcarriers is studied to improve the spectral

efficiency as well as energy efficiency. An overview of various

IM techniques is presented in [6], [7] and a performance

analysis is carried out when a maximum likelihood (ML)

detector is employed in [8].

In general, OFDM-IM has a poor performance under fading.

This is a weakness of OFDM-IM inherited from OFDM,

which cannot exploit any diversity gain under a frequency-

selective fading channel environment [9] [10]. In order to

improve the performance of OFDM-IM, multiple antennas can

be considered for OFDM-IM as in [4], [11]. It is also possible

to consider a transmit diversity scheme without using multiple

antennas as in [12], [13].

It is noteworthy that channel coding plays a crucial role

in improving the performance of OFDM systems under a

frequency-selective fading channel environment [14]. How-

ever, unlike coded OFDM, it is clearly shown in [12] that

the direct application of channel coding to OFDM-IM cannot

result in a good performance without a transmit diversity

scheme. Thus, a transmit diversity scheme such as that in [12]

or [15], which is a repetition diversity technique, is important

for a reasonable performance of OFDM-IM.
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In this letter, we study trellis coded modulation (TCM)

[16] [17] for OFDM-IM. In particular, TCM is applied to

IM so that the active subcarriers can be reliably detected.

A pattern of active subcarriers in a cluster is seen as an

index symbol. Unlike conventional TCM, the TCM symbol

sequence is a sequence of the patterns of active subcarriers in

the frequency domain and the length of sequence is the number

of clusters. Mapping rules to decide a symbol from the output

of a trellis code (i.e., convolutional code) are devised for two

cases to maximize the Hamming distance as a performance

criterion. Consequently, the increase of the distance between

any pair of TCM symbol sequences results in a better detection

performance of active subcarriers than that of uncoded cases.

We can also show that the increase of the Hamming distance

leads to the increase of diversity gain.

Notation: Matrices and vectors are denoted by upper- and

lower-case boldface letters, respectively. The 2-norm of a

vector a is denoted by ||a||. For a matrix X (a vector a),

[X]n ([a]n) represents the nth column (element, resp.). If n is

a set of indices, [X]n is a submatrix of X obtained by taking

the corresponding columns. CN (a,R) (N (a,R)) represents

the distribution of circularly symmetric complex Gaussian

(CSCG) (resp., real-valued Gaussian) random vectors with

mean vector a and covariance matrix R.

II. SYSTEM MODEL FOR TCM-OFDM-IM

A. System model

Suppose that there are L = GN subcarriers, where G
represents the number of cluster and N is the number of

subcarriers per cluster. In each cluster, Q subcarriers are active,

where Q < N , for OFDM-IM. Thus, the number of bits

transmitted by index modulation per cluster becomes

BC = Q log2 M +BI,

where BI = ⌊log2
(

N
Q

)

⌋ and M is the size of the signal

constellation, denoted by M, for the data symbols that are

transmitted by active subcarriers. For convenience, the pattern

of active subcarrier indices for each cluster is referred to as

the cluster index (CI) symbol. For example, if N = 5 and

Q = 2, there are
(

N
Q

)

=
(

5
2

)

= 10 CI symbols. Among those,

we only use 8 symbols to represent 3 bits as ⌊log2
(

5
2

)

⌋ = 3.

In Table I, we show 8 CI symbols with N = 5 and Q = 2.

If some active subcarriers experience severe fading, the

receiver may not be able to detect those active subcarriers

and the performance becomes unsatisfactory in OFDM-IM. In

order to overcome this problem, we can use channel coding.

In particular, in this section, we consider TCM for OFDM-IM.

TCM is used to encode the bits delivered by IM. Let sg
denote the gth CI symbol in an OFDM-IM, g = 0, . . . , G−1.

As mentioned earlier, each CI symbol can deliver BI bits. To
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TABLE I
AN ILLUSTRATION OF 8 CI SYMBOLS FOR N = 5 AND Q = 2.

label (CI symbol) pattern

1 [1 1 0 0 0]
2 [1 0 1 0 0]
3 [1 0 0 1 0]
4 [1 0 0 0 1]
5 [0 1 1 0 0]
6 [0 1 0 1 0]
7 [0 0 1 1 0]
8 [0 0 1 0 1]

c
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2
c

1
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Fig. 1. TCM scheme with a two-state trellis: (a) encoder (‘D’ in the box
represents a delay unit); (b) trellis diagram (the pair of paths yielding the free
distance is shown in bold)

apply TCM, we assume that BI bits are decided by a TCM

encoder. In this case, {sg} becomes an output sequence of

a TCM encoder. For illustration purposes, we consider two

design examples.

B. Design I

With N = 5 and Q = 2, consider a two-state TCM

encoder that is shown in Fig. 1 (a) that has two bits for the

input and three bits for the output. The corresponding trellis

diagram is shown in Fig. 1 (b). Since c2 is an uncoded bit,

the trellis diagram has parallel transitions. The set of three

bits, {c0, c1, c2}, decides the CI symbol according to Table II.

In this case, the number of bits (per cluster) delivered by IM

becomes 2 bits, not ⌊
(

5
2

)

⌋ = 3 bits.

Let d(n,m) denote the Hamming distance between CI sym-

bols n and m. For example, according to Table I, d(1, 2) = 2,

while d(1, 8) = 4. The free distance of TCM is the smallest

distance between pairs of signals associated with parallel

transitions or the smallest distance between pairs of paths

diverging from a node and remerging after some instance. To

see the free distance of TCM, we consider the CI symbols in

Table I and a two-state TCM in Fig. 1. For a pair associated

with parallel transitions (competing paths with length 1), we

can have the Hamming distance as follows:

d({1, 8}, {1, 1}) = d(1, 8) + d(1, 1) = 4 + 0 = 4.

On the other hand, for the case of competing paths with length

> 1, we consider the path consisting of CI symbols 2 and 3

TABLE II
THE SYMBOL MAPPING FOR THE TCM ENCODER IN FIG. 1.

c0 c1 c2 CI symbol label

0 0 0 1
0 0 1 8

0 1 0 2
0 1 1 6

1 0 0 3
1 0 1 5

1 1 0 4
1 1 1 7

and the path of all CI symbol 1, which are shown in bold in

Fig. 1. The Hamming distance of the two pairs is given by

d({1, 1}, {2, 3}) = d(1, 2) + d(1, 3) = 2 + 2 = 4.

As a result, we can see that the two-state TCM in Fig. 1 has

a free distance of 4.

Note that the free distance of uncoded cases (i.e., without

TCM) is 2. For example, from Table I, if no TCM is used, we

can see that the minimum Hamming distance between any pair

of different CI symbols is 2. As in [15], a repetition diversity

scheme can be considered. If the same CI symbol is used for

two clusters, the minimum Hamming distance or free distance

becomes 4. However, the spectral efficiency of IM1 becomes

halved (compared with uncoded systems), while the spectral

efficiency of IM of the TCM scheme in Fig. 1 has decreased

by a factor of 2/3 with the same free distance, which is 4.

The transmitted signal vector of cluster g is given by

xg = a(sg,dg), (1)

where dg represents the vector of the data symbols that are

transmitted by active subcarriers and a(s,d) represents the IM

function with CI symbol s and data symbol vector d. Clearly,

the size of d = dg is Q× 1 and each data symbol becomes a

constellation point of M. For example, suppose that N = 5
and Q = 2. According to Table I, if s = 8 and d = [d1 d2]

T,

where dq ∈ M, we have a(s,d) = [0 0 d1 0 d2]
T.

C. Design II

In order to increase the free distance, we can consider

another design with N = 4 and Q = 2. Among
(

4
2

)

= 6
CI symbols, only the 4 CI symbols in Table III are chosen.

With them, a TCM scheme can be considered with a rate-

half convolutional encoder with generating polynomial (5, 7)
in octal. In this case, there are no parallel transitions and the

four-state trellis diagram can be shown as in Fig. 2.

TABLE III
AN ILLUSTRATION OF THE 4 CI SYMBOLS FOR N = 4 AND Q = 2.

label (CI symbol) pattern

1 [1 1 0 0]
2 [1 0 1 0]
3 [0 1 0 1]
4 [0 0 1 1]

1For this spectral efficiency, only IM bits are taken into account.
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Fig. 2. A rate-1/2 4-state TCM scheme for OFDM-IM (the pair of paths
yielding the free distance is shown in bold).

According to Fig. 2, for the pair of the two paths, {1, 1, 1}
and {4, 2, 4}, we can see that the Hamming distance becomes

d({1, 1, 1}, {4, 2, 4}) = 2d(1, 4) + d(1, 2) = 8+ 2 = 10. This

TCM has a rate of 1/2 as a single bit becomes two coded

bits that decide the pattern of active subcarriers in a cluster.

Clearly, we can have a larger Hamming distance at the cost

of the spectral efficiency.

As in [15], it is possible to use repetition diversity for

reliable transmissions of IM bits. For example, the same set of

active subcarriers can be used for two clusters, which results

in a diversity order of 4 or a free distance of 4 at the cost of

the spectral efficiency. Compared to the above rate-half TCM,

the gain of repetition diversity (in terms of the free distance)

is small.

III. ML DECODING FOR TCM-OFDM-IM

In this section, we study the ML decoding for TCM-

OFDM-IM. Let Hg represent the (frequency-domain) diagonal

channel matrix for cluster g in OFDM-IM. The received signal

vector at the gth cluster is given by

rg = Hgxg + ng = Hga(sg,dg) + ng, (2)

where xg and ng ∼ CN (0, N0I) represent the transmitted

signal vector and the background noise at the gth cluster,

respectively. Then, the ML detection is to find {sg,dg} that

maximizes the following likelihood function:

f({rg}|{sg,dg}) =
G−1
∏

g=0

exp

(

−
||rg −Hga(sg,dg)||

2

N0

)

.

The log-likelihood function of {sg,dg} is given by

C(s0, . . . , sG−1; ,d0, . . . ,dG−1) =

G−1
∑

g=0

Cg(sg;dg), (3)

where Cg(s;d) = ||rg −Hga(s,d)||
2. Since the data symbol

vectors, dg , are independent of TCM, the cost function for

TCM decoding using the Viterbi algorithm2 [18] can be given

2Its complexity is proportional to the product of the length of coded
sequence, G, and |M|Q.

by

C(s0, . . . , sG−1) =

G−1
∑

g=0

Cg(sg), (4)

where

Cg(s) = min
d∈MQ

||rg −Hga(s,d)||
2. (5)

In (5), it is implied that the data symbols are detected for given

CI symbol (or given set of active subcarriers) in each cluster.

On the other hand, if dg is known or fixed, we have

Cg(s) = ||rg −Hga(s,dg)||
2. (6)

In this case, the probability of index error or CI symbol error

is decided by the free distance. Particularly, we can consider

the average pairwise error probability (PEP) for CI symbol

detection for a given cluster (for convenience, we omit the

cluster index g) when s is the correct CI symbol:

P (s → s′) = Pr
(

||r−Ha(s,d)||2 > ||r−Ha(s′,d)||2
)

,
(7)

where s′ 6= s. If the diagonal elements of H are independent

CSCG with zero-mean and unit variance, from [19] [18], we

have

P (s → s′) ≤

(

1

1 + Es

N0

)dH(s,s′)

, (8)

where dH(s, s
′) denotes the Hamming distance between CI

symbols s and s′ and Es is the symbol energy of active

subcarrier. The average PEP in (8) clearly shows that TCM

can improve the performance of OFDM-IM in terms of the

index detection of active subcarriers and the design criterion

has to be the Hamming distance between CI symbols.

IV. SIMULATION RESULTS

In this section, we present simulation results when the

frequency-domain channel coefficients are CSCG random vari-

ables as hn,g ∼ CN (0, 1), where hn,g denotes the channel

coefficient corresponding to nth subcarrier of cluster g, i.e.,

[Hg]n,n = hn,g . The signal-to-noise ratio (SNR) is defined

by Eb

N0

, where Eb represents the bit energy. In particular,

the bit energy in this section is only for IM bits, which is

given by Eb = QEs

BIrtcm
, where Es is the symbol energy of

active subcarrier and rtcm is the rate of the TCM encoder. We

consider the two TCM-OFDM-IM schemes. The first scheme

is based on the rate-2/3 TCM with two-state that is illustrated

in Fig. 1 with (N,Q) = (5, 2). The second scheme is based on

the rate-1/2 TCM with four-state that is illustrated in Fig. 2

with (N,Q) = (4, 2).
Fig. 3 shows the bit error rates (BERs) of uncoded OFDM-

IM and the two TCM-OFDM-IM schemes when dg is fixed

(i.e., the elements of dg are assumed to be 1). For ML

decoding, in this case, the cost of each cluster g is (6). It

can be shown that the diversity order of uncoded OFDM-IM

is 2 and that of the rate-2/3 TCM scheme is 4 as expected. In

other words, the diversity order is identical to the free distance.

The rate-1/2 TCM scheme outperforms the others as its free

distance is larger than those of the others, which is 10.



4

0 2 4 6 8 10 12 14 16 18 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 (dB)

B
E

R

 

 

rate−2/3 TCM (two−state)

rate−1/2 TCM (four−state)

Uncoded

Fig. 3. BER versus Eb/N0 of uncoded OFDM-IM and TCM-OFDM-IM
systems (rate-2/3 TCM with 2-state and (N,Q) = (5, 2) and rate-1/2 TCM
with 4-state and (N,Q) = (4, 2)) when the data symbols are fixed and known
at the receiver (i.e., dg = 1).
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Fig. 4. BER versus Eb/N0 of uncoded OFDM-IM and TCM-OFDM-IM
systems (rate-2/3 TCM with 2-state and (N,Q) = (5, 2) and rate-1/2 TCM
with 4-state and (N,Q) = (4, 2)) when QAM is used for dg ∈ MQ, where

M = {(±1± j)/
√
2.

We now consider the case that the data symbols are not

fixed. For ML decoding, the cost of each cluster g is (5).

Compared with the results in Fig. 3, we can see that the BERs

in Fig. 4 are high due to the detection errors of data symbols.

More importantly, we can observe that the diversity order has

decreased. For example, from the BER result in Fig. 4, we

can see that the diversity order of the rate-2/3 TCM scheme

is about 2 (as the SNR at a BER of 10−2 is 18 dB, while that

at a BER of 10−3 is about 23 dB). On the other hand, its free

distance is 4 and the diversity order in Fig. 3 is also shown

to be 4. To see the performance (with data symbol detection)

clearly, we need a further study in the future.

V. CONCLUSIONS

TCM has been applied to CI symbols in OFDM-IM in

order to increase the Hamming distance between CI sequences,

which results in a better detection performance over frequency-

selective fading channels. We devised two designs for TCM-

OFDM-IM and showed the increase of the free distance. It

was also shown that the maximization of Hamming distance

results in the decrease of the probability of index error as the

diversity gain increases. Simulations have been carried out to

see the performances of the two designed mapping rules for

TCM-OFDM-IM.

As further research topics, we consider a generalized design

rule for TCM-OFDM-IM and a complete performance analysis

with data symbol detection, which can allow us to see the

relationship between the diversity gain and the free distance

of TCM clearly.
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