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Level-Triggered Harvest-then-Consume Protocol
with Two Bits or Less Energy State Information

Sudarshan Guruacharya, Vandana Mittal, and Ekram Hossain

Abstract—We propose a variation of harvest-then-consume
protocol with low complexity where the harvest and consume
phases change when the battery energy level reaches certain
thresholds. The proposed protocol allows us to control the
possible energy outage during consumption phase. Assuming that
the battery is perfect and that the energy arrival is a renewal
process, we analyze the duty cycle and the operating cycle speed
of the protocol. The proposed protocol also allows for limited
battery energy state information. The cases when the system has
two-bits, one-bit, and zero-bit of battery energy state information
are studied in detail. Numerical simulations verify the obtained
formulas.

Index Terms—Energy-harvesting wireless communication,
harvest-then-consume, limited energy state information (ESI)

I. INTRODUCTION

Harvest-then-consume protocol is an instance of time-
switching architecture of energy harvesting communication,
where harvest and consume phases alternate between each
other. In much of the work on this protocol, the duration of
a harvest-consume cycle is assumed to be fixed, and the duty
cycle is assumed as the control variable, with the goal of maxi-
mizing the system throughput [1, references therein]. However,
this can result in an energy outage when the harvested energy
is insufficient to power the consumer’s application.

In this letter, we consider a less complex variation of
harvest-then-consume protocol where the phase change hap-
pens when the battery energy level crosses certain threshold;
hence the qualifier level-triggered. The protocol we describe
has a built-in guarantee over energy outage. A similar protocol
was used for empirical work in [2] and for relay system in
[3]–[6]. All these papers had slotted time process, making
the energy inter-arrival time deterministic. In [3], [5], [6], the
energy evolution is modeled as discrete time, discrete state
Markov chain and the stationary distribution of the Markov
chain is obtained. These papers did not investigate the duty
cycle nor the cycle speed of the protocol. In [4] duty cycle
was studied; but the authors missed the fact that the duty cycle
converges to a limiting value for large thresholds. This paper
generalizes these works since, in our work, the energy inter-
arrival time and energy packet size can be any distribution
with finite mean and variance.

Being level-triggered also means that at most two bits of
energy state information (ESI) are needed to monitor the
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changes in the battery (or super-capacitor) level. This is an
important observation, missed by prior papers, since (a) the
battery’s state-of-charge cannot be directly measured, and
(b) the accurate estimation of the state-of-charge remains a
difficult task, primarily because of limited battery models
and parametric uncertainties in these models [8], [9]. The
proposed protocol greatly simplifies the system design, since
the dedicated circuitry and complex algorithm needed to
monitor the battery’s energy state can be reduced or done
away with completely, in favor of inexact data. Also, since
the goal of the protocol is to ensure energy sufficiency for
a given time frame, complicated optimization problem over
finite or infinite time horizon is avoided. Lowering the ESI
(two bits or less) can imply cheaper design, lower circuit
power consumption, greater robustness to circuit failures, and
lower circuit complexity. All these features are important when
we design wireless sensor nodes. However, this can come
at the cost of reduced efficiency. Counter-intuitively, we will
show that when the threshold energy is large, performance for
all the limited ESI cases converge to same value.

Our contributions in this paper are to (1) analyze the
operating speed and the duty cycle of the proposed protocol,
and establish upper bounds on performance, (2) for cases
when two-bits, one-bit, and zero-bit of ESI is available,
given the energy and information outage constraints, and
(3) show that they converge to the same limiting value for
large threshold. For such analysis, the information of the
recharge time distribution is required [7]. While these metrics
are independent of the purpose of the energy consumption,
nevertheless, we will assume that the energy is used to transmit
messages in a point-to-point wireless communications system.
The case of one-bit ESI and zero-bit ESI are interesting
in itself, since they represents “half blind” and “full blind”
design, respectively. For one-bit ESI, the harvest duration is
deterministic; while for zero-bit ESI, both the harvest and
consume durations are deterministic. Note that such a simple
harvest-then-consume protocol will be particularly suitable for
low-complexity energy-harvesting wireless sensor nodes and
internet-of-things (IoT). To the best of our knowledge, we are
not aware of any prior work that deals with limited ESI.

II. SYSTEM MODEL

Let U(t) be the energy level of the battery at any given time
t. At any given time, the battery can be in one of the three
possible states: (i) Battery is empty, U(t) = 0, (ii) Battery
is not empty but the energy level is below some required
threshold u, such that 0 < U(t) < u, (iii) Battery energy
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level is above the required threshold, U(t) > u. These three
possible energy states can be represented by just two bits of
information. Thus, we have a system with limited ESI.

In this letter, we will consider the following simple version
of the harvest-then-consume protocol:

• The system switches off and goes into harvest phase when
the battery is empty, i.e. after U(t) = 0.

• The system switches on and goes into consumption phase
after the battery has acquired u amount of energy, i.e.
after U(t) > u.

Here, harvest and consume phases are triggered when battery
attains certain fixed levels, hence the name level triggered.

For simplicity, during the consumption phase we will as-
sume that the rate of energy consumption (or the consumed
power) p is constant. Let τc = inf{t : U(t) > u,U(0) = 0}
be the recharge duration and τd = inf{t : U(τc + t) = 0} be
the discharge duration. Then, the total harvest-consume cycle
duration is T = τc+τd. The performance metric of the harvest-
then-consume protocol is taken to be

ω =
1

E[T ]
and ρ =

E[τd]

E[T ]
. (1)

Here, ω represents the cycle speed at which the protocol
can operate and has the units of Hertz. The other metric,
ρ, is the duty cycle, such that ρ ∈ (0, 1). It represents the
fraction of time that the system does some useful work and is
a dimensionless number. In this paper, we will derive formulas
for these two metrics of interest.

During the harvest phase, we model that the recharge
process for perfect battery (i.e. linear charging and no self-
discharge) as

U(t) =

NA(t)∑
i=1

Xi, (2)

where NA(t) = min{k : A0 + A1 + · · · + Ak ≤ t} counts
the number of energy arrivals, Ai≥1 is the inter-arrival time
of energy packets, A0 is the residual time, and Xi is the
energy packet size. The energy arrival is assumed to be a
delayed renewal process. The {Ai≥1} and {Xi} are assumed
to be independent and identically distributed with finite mean
and variance. Also, we assume that {Ai} and {Xi} are
independent of each other. Lastly, we assume that the joint
distribution of the random vectors {(Ai, Xi)} are identically
distributed as (A,X). For notational convenience, we will
denote λ = 1/E[A] and X̄ = E[X].

With less than two bits of ESI, the system may not be able
tell if the battery has the desired energy level. As such, we
need to impose a statistical guarantee on the energy outage.
Let the energy outage constraint at the switching time tc be

P (U(tc) ≤ u) = θ1, (3)

where θ1 ∈ (0, 1). Here tc is a fixed duration of recharge, after
which the system is turned on for the consume phase.

Given the recharge process in (2), the mean and variance
of τc for large u are, respectively1 [7, Eqns. (8), (9)],

E[τc] ∼ C1 +
u

λX̄
, and V[τc] ∼ C2 +

γ2u

X̄3
. (4)

1Here, f(x) ∼ g(x) if and only if limx→∞
f(x)
g(x)

= 1.

Here the constants C1 = λγ2

2X̄2 and C2 =
µ
(3)
A

3µA
−
(
µ2
A+σ2

A

2µA

)2

,

where µ
(3)
A is the third moment of A; σ2

A and σ2
X are the

variances of A and X , respectively; and γ2 = λ−2σ2
X+σ2

AX̄
2.

For large u, we can neglect the constant term and simply
write E[τc] ∼ u/λX̄ and V[τc] ∼ γ2u/X̄3. Thus, invoking
the central limit theorem, for large u the distribution of τc is
given by [7, Eqn. (11)],

P (τc(u) ≤ tc) ≈ Φ

(
tc − E[τc]√

V[τc]

)
, (5)

where Φ(·) is the standard normal distribution.
If the harvested energy is used to transmit information2 in

a narrow band channel, then in the transmit phase, assuming a
point-to-point wireless communications system with transmit
power p, flat fading channel gain g, and additive white Gaus-
sian noise with power N , we have the signal-to-noise ratio
(SNR) given by Z = gp/N . We assume that the transmitter
always has data to transmit. Let the SNR outage constraint be

P (Z ≤ ζ) = θ2, (6)

where θ2 ∈ (0, 1) while ζ is the threshold SNR required
for correct decoding of the message signal. Substituting the
expression for SNR in (6), we have P

(
g ≤ ζN

p

)
= θ2. Since

P
(
g ≤ ζN

p

)
= FG

(
ζN
p

)
, where FG is the distribution of g,

we can solve for p = ζN

F−1
G (θ2)

.
The metrics ω and ρ are clearly related to the throughput

of the system. If a single symbol is transmitted in every
time frame T , then the average symbol rate of the system
is 1/E[T ] = ω. Also, let the symbol energy be u = pTs,
where Ts is the fixed symbol duration. Then, for large u, we
have ω ∼ pρ

u and ρ ∼ λX̄
λX̄+p

(as we will see in later sections);
and the symbol rate of the system becomes ω ∼ ρ

Ts
, which

is affected the duty cycle ρ. This also explains why the duty
cycle can be taken as the efficiency of the system. If ρ = 0,
then no symbol can be transmitted. If ρ = 1, then the system
transmits at its maximum possible rate. Thus the system is
limited by the harvest delay, rather than channel capacity.

III. WITH TWO BITS OF ENERGY STATE INFORMATION

With two bits of ESI, the system can know when the battery
is empty and when it has sufficient energy. The duration that
the recharge process takes to cross the desired energy level u
is τc, where τc is a random variable. Once the required energy
level has been crossed, the system is turned on. The time it
takes to fully discharge the battery is τd = U(τc)/p; and the
total charging and discharging time is T = τc + U(τc)

p . Here
again T is a random variable. Also, at the level crossing time
τc, U(τc) = u+V , where V ≥ 0 is the value by which U(τc)
overshoots the required energy level u. Since U(t) is renewal
process, the overshoot is given by the stationary residual den-
sity of X , assuming u is large, as fV (v) = X̄−1[1− FX(v)].
Thus, we have T = τc + (u + V )/p. Here, τc and V are
independent of each other, thus the distribution of their sum

2Depending on the number of ESI bits, cycle time can be random; thus,
asynchronous communication may be needed.
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can be obtained by the convolution of their distributions. We
can find the mean value of U as E[U(τc)] = u + C3, where
C3 = (σ2

X+X̄2)/2X̄ is the mean of V which does not depend
on u. Also, using (4) and the mean of U(τc), we have the mean
of T as E[T ] =

(
1
λX̄

+ 1
p

)
u+

(
C1 + C3

p

)
.

From these, the duty cycle ρ = E[τd]/E[T ] =
E[U(τc)]/pE[T ] and the system speed ω = 1/E[T ] are

ρ =
u+ C3(

1 + p
λX̄

)
u+ (pC1 + C3)

, (7)

ω =

[(
1

p
+

1

λX̄

)
u+

(
C1 +

C3

p

)]−1

. (8)

As a special case, as u → 0, we have the duty cycle as
ρ = C3/(pC1 + C3), and the system’s cycle speed as ω =
p/(pC1 + C3). This is also the fastest speed that the system
can attain; thus ω ≤ p/(pC1 + C3).

Likewise, as u → ∞, we can ignore the constant terms.
Thus, E[U(τc)] ∼ u and E[T ] ∼

(
1
p + 1

λX̄

)
u. In other words,

larger the required energy, more we need to wait. Also, the
duty cycle is ρ ∼ λX̄

λX̄+p
, and the system’s cycle speed is

ω ∼ pρ
u .

Interestingly, this limiting value of ρ is not equal to its value
at u = 0. Setting u = 0 represents an opportunistic scheme
where the harvested energy is immediately consumed. When
u = 0, we have U(τc) = X and τd = U(τc)/p = X/p. Hence,
E[τd] = X̄/p. Similarly, E[T ] = E[τc] + E[τd] = C1 + X̄/p.
Therefore, ρ = (1 + pC1/X̄)−1 and ω = (C1 + X̄/p)−1.
For small values of u, these formulas for ρ and ω will not be
accurate, since we assume stationary residual distribution for
A0 and V , which is valid only for large u. Note that when
u = 0, only one bit is required to check the battery status;
thus this analysis is valid for Section IV as well.

IV. WITH ONE BIT ENERGY STATE INFORMATION

Here, we assume that the system can discern whether or not
the battery is empty. As such, during the charging process, only
statistical guarantee (3) can be given for the energy outage.
Using (4) and (5) in (3), the switching time tc is given by

tc = C1 + Φ−1(1− θ1)

√
C2 +

γ2u

X̄3
+

u

λX̄
. (9)

The minima at u = 0 is tc,min = C1 + Φ−1(1 − θ1)
√
C2,

which gives the minimum waiting time for an energy packet
to arrive.

Once the system is switched on at tc, the duration it takes
for the battery to completely discharge is τd = U(tc)/p. We
can find the distribution for the discharge duration as [10]

P (τd ≤ td) = P (U(tc) ≤ ptd) = Φ

(
ptd − λX̄tc
γλ3/2

√
tc

)
. (10)

Thus, the mean discharge time is E[τd] = λX̄tc/p.
Since the system can detect when the battery is empty, we

can start the recharging process when the battery is completely
discharged. Thus, the cycle duration is T = tc + τd. The
distribution of T is

P (T ≤ t) = P (τd ≤ t− tc) = Φ

(
pt− (p+ λX̄)tc

γλ3/2
√
tc

)
.

Thus, the mean of T is E[T ] = (p + λX̄)tc/p. Hence, from
these the duty cycle and the cycle speed are

ρ =
λX̄

p+ λX̄
, and ω =

p

(p+ λX̄)tc
. (11)

Interestingly, since the maximum value of ω is obtained
when tc is minimum at u = 0, we have the upper bound

ω ≤ p

(p+ λX̄)(C1 + Φ−1(1− θ1)
√
C2)

. (12)

If we neglect the constant term and the term with square
root for tc, then we have ω = 1

E[T ] ∼
pλX̄

u(p+λX̄)
= pρ

u .

V. NO ENERGY STATE INFORMATION

In this case, since we do not have any information on the
battery state, we need to rely on the statistical constraints (3).
Unlike other cases, here T is a control parameter. Let the
harvest duration be tc, as given by (9), and the consumption
duration be T − tc > 0. Here, we do not concern ourself
with complete discharge of the battery. Rather, we focus on
the consumption of fixed u amount of energy within the
consumption phase. Once this amount of energy is consumed,
the system reverts to the harvest phase. Thus, some excess
energy may remain in the battery after the consume phase. For
simplicity, we will neglect the excess energy in the analysis.
This is equivalent to assuming that any excess energy after
a complete harvest-consume cycle is wasted or dissipated
unproductively.

Since the consumed power is maintained at fixed p, the
consumed energy is u = ptd = pρT . Substituting this value
of u in (9), dividing both sides by T , and using the fact that
tc/T = 1 − td/T = 1 − ρ, we have 1 − ρ = d +

√
c+ bρ +

aρ, where a = p/λX̄ , b = p(γΦ−1(1 − θ1))2/X̄3T , c =
C2(Φ−1(1− θ1)/T )2, and d = C1/T . Here, all the constants
a, b, c, d ≥ 0. Completing the square and solving ρ, we obtain

ρ =
2(1 + a)(1− d) + b±

√
b2 + 4(1 + a)((1 + a)c+ b(1− d))

2(1 + a)2
.

(13)
When T → ∞, the parameters b → 0, c → 0, and d → 0,

thus ρ→ 1
1+a = λX̄

p+λX̄
, regardless of the value of θ1.

A. Feasibility Conditions

For the solution ρ to be feasible, ρ should be within the
interval (0, 1). Thus we need to check the conditions when
ρ > 0 and ρ < 1.

For ρ > 0, from (13), after some simplification, we obtain
the condition (a + 1)2(c − (d − 1)2) > 0. Since a + 1 is
always positive, we have the desired condition c > (d − 1)2.
Substituting the definitions of c and d, we find that this
condition reduces to T > tc,min, where tc,min is as given
in Section IV. If the terms c and d were neglected, then the
condition would reduce to a+ 1 > 0, which is always true.

For ρ < 1, from (13) after some simplification, we obtain
we have the desired condition (a+d)2 > b+c. Substituting the
expressions for b, c, and d, results in the condition f(T ) > 0,
where the function f(T ) = KT 2 +LT +M , with coefficients
K = a2, L = 2aC1 + pΦ−1(1 − θ1)2/X̄3, and M = C2

1 −
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C2Φ−1(1− θ1)2. The condition f(T ) > 0 is satisfied for any
T if the discriminant of f(T ) is negative. That is, if L2 −
4KM < 0. When this is not the case, we have T > T+,
where T+ is the largest root of f(T ) = 0 given by T+ =
(−L +

√
L2 − 4KM)/2K. Had we neglected c and d, the

condition (a + d)2 > b + c would have simplify to a2 > b;
and substituting the expression for a and b, and solving for T
would have given us T > λ2γ2

pX̄
[Φ−1(1− θ1)]2.

Hence, we have the lower bound on T as T >
max(tc,min, T+) and the upper bound on ω as

ω <
1

max(tc,min, T+)
. (14)

B. Possible Variation

If proper discharge is to be ensured for fixed cycle period
T , then allowed discharge time is td = T − tc. Thus, we have
from (10)

P (τd ≤ T − tc) = Φ

(
pT − (p+ λX̄)tc

γλ3/2
√
tc

)
.

Let the probability that battery is fully discharged by time td
be constrained at P (τd ≤ td) = θ3. Then, we have

T =

(
1 +

λX̄

p

)
tc +

γλ3/2

p

√
tcΦ

−1(θ3). (15)

If we ignore the square root terms, for large u, we have
the approximation T ∼

(
1
λX̄

+ 1
p

)
u; and similarly, the duty

cycle ρ = 1 − tc/T is ρ ∼ λX̄
p+λX̄

. Likewise, the cycle speed

of the system is 1
T ∼

1
u

(
λX̄p
λX̄+p

)
= ρp

u .

VI. NUMERICAL VERIFICATION

In this section, we verify the obtained formulas with Monte
Carlo simulations for the case of two-bit and one-bit ESI. In
Fig. 1a and Fig. 1b we plot the duty cycle ρ and operating
cycle speed ω with respect to the threshold energy level u. For
the two bit case, since the time τc and τd are known, it is easy
to calculate the charging and discharging time, and hence the
duty cycle and operating frequency. However, for one bit case,
charging time tc is calculated using (9) and discharge time τd
is calculated using U(tc)/p. Both the energy packet size X and
energy arrival A are assumed to follow a uniform distribution
U(0, 2), with unit mean and variance 1/3. We assume that the
power consumption p = 2 and θ1 = 0.1. For a given u, 10,000
simulations are run to obtain a single value of ρ and ω.

The theoretical expressions for ρ and ω for two bit ESI are
given by equations (7) and (8), respectively; and for one bit
ESI, ρ and ω are given by equations (11), respectively. From
Fig. 1a and Fig. 1b, we see that both ρ and ω do not vary
much for higher values of u. The results from the simulations
match closely with the theoretical predictions.

VII. CONCLUSION

A level-triggered harvest-then-consume protocol has been
proposed. The duty cycle and operating cycle speed of the
system have been derived for cases when the system has two-
bits, one-bit, and zero-bit of battery energy state information.
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Fig. 1: (a) Duty cycle versus battery energy level, (b) Operating
cycle speed versus battery energy level, when energy packet size X
and inter-arrival time A are uniformly distributed.

Upper bounds on the system’s speed have been obtained.
Monte Carlo simulations have been performed to verify the
obtained formulas.
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