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Low-Dimensionality of Noise-Free RSS and Its

Application in Distributed Massive MIMO
K. N. R. Surya Vara Prasad, Ekram Hossain, and Vijay K. Bhargava

Abstract—We examine the dimensionality of noise-free uplink
received signal strength (RSS) data in a distributed multiuser
massive multiple-input multiple-output system. Specifically, we
apply principal component analysis to the noise-free uplink RSS
and observe that it has a low-dimensional principal subspace.
We make use of this unique property to propose RecGP - a
reconstruction-based Gaussian process regression (GP) method
which predicts user locations from uplink RSS data. Considering
noise-free RSS for training and noisy test RSS for location
prediction, RecGP reconstructs the noisy test RSS from a low-
dimensional principal subspace of the noise-free training RSS.
The reconstructed RSS is input to a trained GP model for location
prediction. Noise reduction facilitated by the reconstruction step
allows RecGP to achieve lower prediction error than standard GP
methods which directly use the test RSS for location prediction.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) has at-

tracted great attention recently, due to the multifold gains

in spectral and energy efficiency it can offer [1] [2]. In

a distributed massive MIMO (DM-MIMO) system, a large

number of base station (BS) antennas are distributed over a

service area to cater to multiple users simultaneously on the

same-time frequency resource [3]. When a user transmits on

the uplink, each BS antenna records its own received signal

strength (RSS) value and a large vector of RSS values becomes

available at the BS. Since the RSS vectors can be very large,

we examine whether they span a low-dimensional principal

subspace. To this end, we apply principal component analysis

(PCA) [4] on multiple noise-free RSS vectors and observe that

they indeed span a low-dimensional principal subspace.

As a motivating use-case of the above property, we propose

RecGP - a reconstruction method based on Gaussian process

regression (GP) [5] to predict user locations from noisy uplink

RSS vectors. We consider a scenario where noise-free RSS is

available for training the GP, but only noisy RSS of the test

user is available for predicting its location. RecGP reduces

the noise present in the test RSS vectors by reconstructing

them from a low-dimensional principal subspace of the noise-

free training RSS. This noise reduction allows RecGP to

achieve lower prediction error than standard GP methods

which directly use the test RSS vectors for location prediction.

Few authors have studied system design [3] [6] and resource

utilization [7] in DM-MIMO, but the low-dimensionality as-
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pect of RSS in DM-MIMO has not been explored. We apply

PCA to noise-free uplink RSS in DM-MIMO and report for

the first time that it has a low-dimensional principal subspace.

Recently, the authors in [8] have proposed a standard GP

method for location prediction in DM-MIMO, but with noisy

RSS for both training and prediction. In contrast, we consider

noise-free RSS for training and propose a new GP method

which exploits the low-dimensionality of noise-free training

RSS to achieve lower prediction error than standard GP.

Notation: We use boldface small and capital letters for

vectors and matrices respectively. The notations [a]i, [A]i, and

[A]ij refer to the element i in vector a, column i in matrix

A, and the element (i, j) in matrix A, respectively. Overhead

symbols (̃.) and (̂.) refer to training and test data, respectively,

with an additional superscript (.)∗ if the data is noise-free.

II. SYSTEM DESCRIPTION

We consider multiuser transmissions in a DM-MIMO sys-

tem, where K users transmit radio signals to M distributed

BS antennas simultaneously and on the same time-frequency

resource. The BS antennas are connected to a computing unit

(CU) via high-speed backhaul to offload all the computational

load. When the K users transmit on the uplink, each BS

antenna records its own RSS value and an M×1 vector of RSS

values becomes available at the CU for further processing.

A. Uplink Transmissions in DM-MIMO

Let sk be the symbol vector transmitted by user k and ρ be

the transmission power of each scheduled user. The symbol

vector rm received by the BS antenna m is given by

rm =
√
ρ

K∑

k=1

hkmsk + zrx
m, (1)

where hmk = qmk

√
βmk is the flat-fading uplink channel

gain with qmk and βmk being small-scale and large-scale

fading coefficients, and zrx
m ∼ N(0, σ2

rxI) is the additive white

Gaussian noise vector. We assume that the coefficients qmk

are independent and identically distributed complex normal

random variables, i.e., qmk ∼ CN(0, 1), and model βmk as

βmk = l0d
−η
mk

10
zsh
mk
10 (2)

where dmk is the distance between the user k and BS antenna

m, l0 is the reference path-loss at a distance d0, η is the path-

loss exponent, and zsh
mk

∼ N(0, σ2
sh
) is channel power gain due

to shadowing.
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(a) M = 30
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(b) M = 60
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(c) M = 30
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Fig. 1: Plots of the singular values and reconstruction errors (with the first L PCs) for M = 30 and M = 60, averaged over

200 different noise-free RSS matrices. In Figs. 1a-1b, we observe that the first few singular values explain most of the energy

contained in P∗. In Figs. 1c-1d, we observe that the first few PCs reconstruct more than 95% of the data contained in P∗.

B. Obtaining Noise-free RSS

The RSS pmk of each user k should be extracted from the

sum-RSS | |rm | |2. This can be done if the uplink vectors {sk}
in (1) are mutually orthogonal and are known at the BS. For

example, {sk} can be pilot sequences used in signal detection

[9]. The RSS pmk of user k can then be obtained from (1) as

pmk = ρβmk |qmk |2. (3)

Observe from (3) that the extracted RSS values can be noisy

due to small-scale fading and shadowing effects. While the

small-scale fading can be averaged out over multiple timeslots,

shadowing can be spatially averaged out if we have prior

access to the user’s location. For example, the BS can record

the RSS averaged over nearby locations with approximately

the same user-to-BS distance. When both multi-timeslot and

spatial averaging are employed, we can obtain the noise-free

RSS p∗
mk,dB

of each user k (in dB scale) from (2) and (3), as

p∗
mk,dB = p0,dB − 10η log10(dmk), (4)

where p0,dB = 10 log10(ρl0) is the reference RSS at distance

d0 and a superscript (.)∗ is given to pmk,dB to highlight that it

is noise-free. The BS can then form an M × 1 noise-free RSS

vector p∗
k

for each user k such that

p∗
k = [p∗1k,dB p∗2k,dB . . . p∗Mk,dB]

T . (5)

Following the same procedure, the BS can extract noise-free

RSS vectors for N different user locations and accumulate

them into an N × M noise-free RSS matrix P∗, such that

P∗
= [p∗

1 p∗
2 . . . p

∗
N ]T . (6)

III. LOW-DIMENSIONALITY OF THE NOISE-FREE RSS

We take a simulation approach to demonstrate that the noise-

free RSS matrix P∗ in (6) has a low-dimensional principal

subspace. We consider two example scenarios with M = 30

and M = 60 BS antennas distributed randomly over a 500m

×500m service area. A sample noise-free RSS matrix P∗ is

built by choosing N = 1000 locations distributed randomly in

the service area and using (4) with parameters as per Table I to

generate the noise-free RSS vectors. This is repeated to build

200 different RSS matrices each for M = 30 and M = 60.

We now decompose each sample matrix P∗ into three parts

via singular value decomposition [4] to obtain

P∗
= UDVT , (7)

where columns of the orthogonal matrices U and V are the

left singular and right singular vectors of P∗, and the diagonal

elements in D are the singular values of P∗ arranged in

decreasing order. In Fig. 1a and 1b, we plot the singular values,

averaged over the 200 different P∗ matrices, for M = 30

and M = 60, respectively. Error bars represent the maximum

observed deviation from average values. For both M = 30 and

M = 60, we notice that the first few singular values represent

most of the energy contained in the P∗.
For further insight, we study the error incurred upon re-

constructing the noise-free RSS matrices from the subspace

spanned by the first L principal components (PCs). Using

truncated SVD [4], we can reconstruct each sample matrix

P∗ from its first L PCs as U[L]D[L]V[L]T , where U[L]and

V[L] are matrices formed by the first L columns of U and

V, respectively, and D[L] is the diagonal matrix formed by

the first L singular values of P∗. The reconstruction error

| |P∗ − U[L]D[L]V[L]T | |2, averaged over the 200 different P∗

matrices, is plotted in Figs. 1c and 1d against the number of

chosen PCs L. We observe that for both M = 30 and M = 60,

the first few PCs are consistently able to reconstruct more than

95% of the data contained in P∗. Similar plots are observed

for M ranging from 30 to 100. These plots show that we can

form a low-dimensional principal subspace of the noise-free

RSS by combining the first L PCs of P∗, with L chosen to

keep the reconstruction error below a certain threshold (for

example, 5%). In the next section, we present a motivating use-

case which exploits the low-dimensionality of this principal

subspace to predict user locations in DM-MIMO.

IV. RECGP: A GP METHOD FOR LOCATION PREDICTION

We propose RecGP, which is a reconstruction-based GP

method to predict user locations from uplink RSS vectors in

DM-MIMO. As in standard GP [5], we train a GP model with

RSS vectors for several known user locations. The trained

GP model, when input with the RSS vector of a test user,

outputs an estimate of the test user’s location. We consider

noise-free RSS for training the GP because small-scale fading

can be averaged out over multiple time slots and shadowing



can be spatially averaged out using our access to the training

user locations. In contrast, we consider the test RSS vectors

as noisy due to shadowing. This is because, although time-

averaging can mitigate small-scale fading, we do not have

access to the test user’s location and are therefore unable to

spatially average out the shadowing noise present in test RSS.

While the standard GP directly inputs the test RSS vectors

to a trained GP model for location prediction, RecGP first

reduces the noise in test RSS vectors by reconstructing them

from a low-dimensional principal subspace of the noise-free

training RSS. The reconstructed RSS vectors are input to

a trained GP model for location prediction. Details of the

training and prediction phases in RecGP are presented next,

with focus on x−coordinates1of the users.

1) Training Phase: We train a GP model to learn the

function fx (.) which maps the RSS vector pk of any user k

to its x−coordinate xk such that xk = fx(pk), ∀xk . At the

core of GP methods is the assumption that any finite set of

realizations of the function to be learned, i.e., fx(.), follow

a zero-mean Gaussian distribution with a covariance matrix

Φ whose elements are given by a user-defined function φ(.)
[5]. In short, we say fx(.) ∼ GP(0, φ(.)). The function fx(.) is

fully specified by φ(.) because a Gaussian distribution is fully

specified by its mean and variance. Functionally, φ(.) models

the covariance of x−coordinates of any two users i and j in

terms of their RSS vectors pi and pj . We choose φ(.) as [10]

φ(pi, pj ) = α exp((pi − pj )TB−1(pj − pi)) + γpT
i pj, (8)

where the exponential term and the inner product terms model

the dependence of φ(pi, pj ) on the distance (pi − pj ) and the

actual RSS pi and pj , respectively. The model in (8) introduces

a free-parameter vector θ = [α; [B]11; [B]22; . . . [B]MM ; γ].
We learn θ via maximum-likelihood of the vector x̃ =

[x̃1 x̃2 . . . x̃
Ñ
]T of Ñ training user x−coordinates, as

θ̄ = arg max
θ

log(p(̃x|P̃∗, θ)). (9)

In (9), θ̄ is the learned vector θ, P̃∗
= [̃p∗

1
p̃∗

2
. . . p̃∗

Ñ
]T is the

noise-free training RSS matrix, and the distribution of (̃x|P̃∗, θ)
follows from the GP assumption fx (.) ∼ GP(0, φ(.)) as [5]

x̃|P̃∗, θ ∼ N(0, Φ̃∗), where

[Φ̃∗]n,n′ = φ(̃p∗
n, p̃

∗
n′), n, n′

= 1, . . . , Ñ .
(10)

The problem in (9) is non-convex, but can be solved for local

optimum using gradient ascent methods such as conjugate

gradient [5]. Learning θ completes the training phase because

the x−coordinate function fx(.) is fully specified by φ(.).
2) Reconstruction Phase: Let x̂ = [x̂1 x̂2 . . . x̂

N̂
]T be the

N̂ × 1 vector of the test users’ x−coordinates that we should

predict, and P̂ = [̂p1 p̂2 . . . p̂N̂
]T be the corresponding matrix

of noisy test RSS vectors. If we combine the first L PCs of the

noise-free training RSS P̃∗ to form a low-dimensional principal

subspace, we can reconstruct the noisy test RSS P̂ from this

principal subspace as follows [4]:

P̂(rec)
= P̂V[L]V[L]T, (11)

1The presented method is equally valid for y−coordinates as well.

TABLE I: Simulation values as per the urban micro model in

3GPP TR 25.814 [11]

Simulation parameter Value

User transmit power (ρ) 21dBm (125mW)

Reference distance (d0) 10m

Reference pathloss (l0) −47.5dB

Path-loss exponent (η) 0, if dmk < 10m
2, if 10m ≤ dmk ≤ 45m
6.7, otherwise

where V[L] is the matrix formed by the first L right singular

vectors of P̃∗. Eq. (11) inherently facilitates noise reduction

because the noisy test RSS vectors are projected onto a

subspace spanned by noise-free RSS. The reconstructed RSS

matrix P̂(rec) is input to the trained GP for predicting x̂.

3) Prediction Phase: As per the GP assumption fx(.) ∼
GP(0, φ(.)), the training and test vectors x̃ and x̂ are jointly

Gaussian distributed. Conditioning on this joint distribution

gives the predictive distribution of the x−coordinate [̂x]n of a

test user n whose reconstructed RSS vector is p̂
(rec)
n , as [5]

[̂x]n |̃x, P̃, p̂(rec)
n ∼ N([µ̂x]n, [Ĉx]nn), where

[µ̂x]n =
Ñ∑

i=1

φ(̂p(rec)
n , p̃∗

i )[(Φ̃∗)−1x̃]i, and

[Ĉx]nn = φ(̂p(rec)
n , p̂

(rec)
n ) −

Ñ∑

i=1

Ñ∑

j=1

{φ(̂p(rec)
n , p̃∗

i )

[(Φ̃∗)−1]ijφ(̃p∗
j, p̂

(rec)
n )}.

(12)

In (12), [µ̂x]n and [Ĉx]nn are the predicted mean and variance

of the x−coordinate [̂x]n of the test user n. Since the mean

of a Gaussian distribution is also its mode, [µ̂x]n gives us the

maximum-a-posteriori (MAP) estimate of [̂x]n. Also, [Ĉx]nn
gives us the confidence interval [µ̂x]n±2

√
[Ĉx]nn on choosing

[µ̂x]n as the predicted estimate of [̂x]n. RecGP achieves lower

prediction error than standard GP, thanks to the noise reduction

from reconstruction of the test RSS vectors.

V. SIMULATION STUDIES

We consider an example DM-MIMO setup with M = 30 BS

antennas, Ñ = 400 training user locations, and N̂ = 25 test

user locations, all distributed uniformly over a service area

of 500m × 500m. For training, we generate a noise-free RSS

matrix P̃∗ using (4) with parameters given by Table I. We then

solve the log-likelihood maximization problem in (9) using

conjugate gradient method [5]. Multiple trials are run with

random initial values to avoid choosing a bad local optimum.

For the prediction phase, we generate test RSS matrices P̂

using (4) with an additional shadowing term zsh
mk

∼ N(0, σ2
sh
)

and other parameters as per Table I. We measure prediction

performance in terms of the root mean squared error (RMSE)

between the actual coordinates ([̂x]n, [̂y]n) of the test users

and their estimates ([µ̂x]n, [µ̂y]n). The standard GP (SGP)
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Fig. 2: Average RMSE performance for M = 30 and M = 60.

RecGP consistently outperforms SGP, thanks to noise reduc-

tion from reconstruction of the test RSS.

method, which predicts user locations using test RSS vectors

without reconstruction, serves as the baseline for comparison.

In Fig. 2, we plot the RMSE performance of RecGP and

SGP, averaged over 200 Monte-Carlo realizations of the test

RSS matrices and the N̂ test user locations, for shadowing

noise σ2
sh

ranging from 1dB to 5dB. To reconstruct the test

RSS, we chose L as the number of PCs which most-frequently

gave the lowest RMSE among the Monte-Carlo datasets.

For both M = 30 and M = 60, we observe that RecGP

consistently outperforms SGP, thanks to the noise-reduction

from projecting the test RSS vectors onto a low-dimensional

principal subspace of the noise-free RSS. Also, when the

number of antennas is doubled from M = 30 to M = 60, we

observe that the RMSE performance of RecGP has improved,

but there was a negligible impact on SGP. Lastly, we observe

that the RMSE of both SGP and RecGP increases with the

noise level. Because both the methods are trained with noise-

free RSS, they tend to project the noise present in input RSS

onto the output location coordinate space.

In Fig. 3, we plot the average RMSE performance of

RecGP for M = 30 and M = 60, when the number of

chosen PCs L is increased from 1 to 30 and 60, respectively.

For very low L, the RMSE is very high because we lose

most of the information contained in the test RSS through

reconstruction. Upon increasing L, RMSE decreases initially,

attains a minimum level, followed by a gradual increase, with

the increase being more prominent for higher noise levels.

This is expected, because L introduces a trade-off between

the amount of information lost and the amount of noise

reduced through the reconstruction procedure. Also, note that

the RMSE-minimizing L is different for different noise levels.

We therefore choose L, for a given noise level, as the number

of PCs which most-frequently gives the lowest RMSE among

the Monte-Carlo datasets.

VI. CONCLUSION

We have applied principal component analysis to the noise-

free uplink RSS data in a distributed massive MIMO (DM-

MIMO) system and observed that it spans a low-dimensional

principal subspace. This interesting property can be exploited
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Fig. 3: Average RMSE of RecGP vs. number of PCs L. RMSE

decreases initially, followed by a gradual increase because L

introduces a trade-off between the amount of information lost

and the amount of noise reduced through reconstruction.

for performance improvement in relevant machine learning

applications. As a motivating use-case, we have proposed

RecGP - a reconstruction-based Gaussian process regression

(GP) method which predicts user locations in DM-MIMO

from uplink RSS data. When noise-free RSS is available for

training, but only noisy RSS of the test user is available for

location prediction, RecGP reconstructs the noisy test RSS

from a low-dimensional principal subspace of the noise-free

training RSS. The reconstructed test RSS is used for location

prediction, as opposed to the standard GP method of directly

using the test RSS for the same. Simulation studies have

confirmed that the reconstruction step has reduced noise in

the test RSS and has empowered RecGP to achieve better

prediction performance than standard GP.
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