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Device Caching for Network Offloading: Delay

Minimization with Presence of User Mobility
Tao Deng, Lei You, Pingzhi Fan, Fellow, IEEE, and Di Yuan, Senior Member, IEEE

Abstract—A delay-optimal caching problem (DOCP) in device-
to-device (D2D) networks with moblity is modelled. The problem
arises in the context of achieving offloading using device caching,
and the offloading effect is represented by the expected network
load ratio (NLR) which is the percentage of data that has to be
downloaded from the network. Compared with the related stud-
ies, this work considers minimizing delay with NLR guarantee in
mobility scenarios. A lower bound of global optimum is derived,
thus enabling performance benchmarking of any sub-optimal
algorithm. For problem-solving, an effective search algorithm
(ESA) is proposed based on the bound. Simulations are conducted
to evaluate the effectiveness of the ESA algorithm.

Index Terms—Caching, device-to-device networks, mobility

I. INTRODUCTION

Recently, there is a considerable growth of the research

interest in caching. With caching, users can obtain the contents

of interest from edge devices [1] [2]. The caching performance

depends heavily on the cache placement strategy. In mobility

scenarios, it is necessary to consider the impact of mobility

on optimal caching design [3]. In [4], the authors studied

optimal caching placement with respect to content popularity

and user mobility. In [5], mobility-aware caching was studied

and an approximation algorithm was developed. In [6], based

on mobility prediction, a seamless cache handover framework

was designed. In [7], the authors studied the caching placement

problem with mobility in heterogeneous networks. In [8], the

authors considered caching placement to maximize the data

offloading ratio in device-to-device (D2D) networks. In [9],

the authors considered a cost-optimal caching problem in

D2D networks. As shown in [8] and [9], the offloading effect

benefits from allowing longer time for obtaining data between

devices. However, there is a clear trade-off between offloading

and delay. This letter aims to address this aspect.

In this letter, we model a delay-optimal caching problem

(DOCP), subject to an upper limit on the expected network

load ratio (NLP), which is defined as the percentage of the

data that has to be downloaded from the network. We prove

that DOCP is equivalent to another optimization problem,

referred to as the expected NLR-optimal caching problem

(NOCP). A lower-bounding function of the objective function

of NOCP is derived, thus giving an approximative NOCP

(ANOCP) with linearization. The global optimum of ANOCP

can be derived, resulting in a lower bound of the global
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optimum of DOCP. More importantly, the lower bound enables

performance benchmarking of any sub-optimal algorithm. For

problem-solving, an effective search algorithm (ESA) is pro-

posed based on the lower bound. Simulation results validate

the effectiveness of the proposed algorithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Scenario and Caching Placement

Let U = {1, 2, . . . , U} denote the set of users, where each

user i has a local cache with size Ci. When two users meet,

they can communicate with each other, which is referred to as

a contact. We assume that the contact between users i and j
follows the Poisson distribution with rate λij . This assumption

is common [8]–[10]. Moreover, by investigating real-world

mobility traces, the tail behavior of the inter-contact time

distribution can be described by an exponential distribution

[11]. Let F = {1, 2, . . . , F} denote the set of files, where each

file f is encoded into Sf
max segments via a coding technique

[7], [12]. File f , f ∈ F , can be recovered by collecting at

least Sf
rec distinct segments [8]. The number of segments of

file f stored at user i is denoted as xfi. The probability that

user i requests file f is denoted by Pfi, where
∑

f∈F Pfi = 1.

When a user requests file f , it collects the segments of f from

the encountered users through D2D communications and from

its own cache. The former is subject to a delay period T . At

the end of T , if the total number of collected segments of this

file is at least Sf
rec, this file can be recovered. Otherwise, to

reach Sf
rec segments, the user will have to download additional

segments from the network. Typically, compared to the waiting

time to meet other users, the data downloading time from the

network is negligible.

When two users meet, each of them can collect up to B
segments from the other. The number of contacts for users

i and j is denoted by Mij . Here, Mij follows a Poisson

distribution with mean λijT . Let Sfij denote the number of

segments of file f collected by user i from user j within T ,

which is min(BMij , xfj). Let Sfi denote the number of seg-

ments of file f collected by user i from itself and all the other

users within T , which is
∑

j∈U ,j 6=i min(BMij , xfj) + xfi. If

Sfi < Sf
rec, user i has to download the remaining number of

segments from the network. Let SN
fi denote the number of

segments of file f downloaded from the network, which is

max(Sf
rec − Sfi, 0). The NLR due to user i requesting file f ,

denoted by rfi, is SN
fi/S

f
rec. The NLR that user i recovers a file,

denoted by ri, is thus
∑

f∈F rfiPfi. Therefore, the expected

NLR to recover a file for all the users can be expressed as in

(1), where E(·) denotes the expectation operator.

R(x, T ) , E{
1

U

∑

i∈U

∑

f∈F

Pfi[
max(Sf

rec − Sfi, 0)

S
f
rec

]}. (1)
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B. Problem Formulation

Our problem is to minimize T via optimizing x for an upper

limit of NLP, denoted by R′. Thus, DOCP reads

min
x,T

T (2a)

s.t. R(x, T ) ≤ R′, (2b)
∑

f∈F

xfi ≤ Ci, i ∈ U (2c)

∑

i∈U

xfi ≤ Sf
max, f ∈ F (2d)

xfi = {0, 1, . . . , S
f
rec}, i ∈ U , f ∈ F (2e)

Eq. (2b) states that the expected NLR should respect the

upper limit. Eq. (2c) ensures that the total number of cached

segments does not exceed the cache capacity. By Eq. (2d),

the total number of segments of a file, stored by all users, is

bounded by the number of encoded segments, guaranteeing

that the collected segments of any file will be distinct from

each other. Additionally, our problem is subject to a limit Tmax

that is acceptable by the users.

Lemma 1. [x∗, T ∗] is the optimum of DOCP only if

R(x∗, T ∗) = R′.

Proof. By the proof in Appendix, R(x∗, T ) is a continuous

and monotonically decreasing function with respect to T . As a

result, R(x∗, T ∗) < R′ is suboptimal, because with x∗ fixed,

reducing T ∗ is possible, and this improves the time objective

without violating constraints (2c) and (2d).

For fixed T , define an NOCP problem

R∗(T ) , min
x

R(x, T )|(2c)− (2e),

Lemma 2. For any T ′, denote x
′ = argmin

x
R(x, T ′)|(2c)−

(2e). Then [x′, T ′] is a feasible solution of DOCP if and only

if R∗(T ′) ≤ R′.

Proof. For sufficiency, it is obvious that [x′, T ′] satisfies all

the constraints in DOCP. This is because, [x′, T ′] fulfills (2b)

due to R∗(T ′) ≤ R′. In addition, [x′, T ′] is a feasible in NOCP

and therefore satisfies (2c)-(2e). For necessity, if [x′, T ′] is a

feasible in DOCP, then it satisfies (2c)-(2e) and is thus feasible

in NOCP, with the objective value being R∗(T ′). By (2b),

R∗(T ′) = R(x′, T ′) ≤ R′ holds.

Lemma 3. R∗(T ) is monotonically decreasing in T .

Proof. Suppose T1 < T2. Denote by x1 and x2 the optimal

solutions of R∗(T1) and R∗(T2), respectively. By the proof

in Appendix, R(x1, T1) ≥ R(x1, T2). Thus, R(x1, T1) ≥
R(x2, T2).

Theorem 4. [x∗, T ∗] is optimal to DOCP if and only

if T ∗ = argminT {R
∗(T ) = R′}, where x

∗ =
argmin

x
R(x, T ∗)|(2c)− (2e).

Proof. For sufficiency, by Lemma 2, if [x∗, T ∗] is the opti-

mum of DOCP, R(x∗, T ∗) ≤ R′. Assume strict inequality.

By Lemma 1, [x∗, T ∗] is not the optimum. Hence [x∗, T ∗]
satisfies T ∗ = argminT {R

∗(T ) = R′}. We then prove the

sufficiency. If T ∗ = argminT {R
∗(T ) = R′}, by Lemma 2,

[x∗, T ∗] is feasible to DOCP. As R∗(T ) is monotonically de-

creasing in T , one cannot decrease T ∗, otherwise the constraint

(2b) would be violated. Thus, [x∗, T ∗] is the optimum.

By Theorem 4, [x∗, T ∗] can be derived via finding T ∗ =
argminT {R

∗(T ) = R′}.

III. ALGORITHM DESIGN AND ANALYSIS

In general it is difficult to solve formulation (2) due to its

mixed-integer and non-linear elements. The proof of the hard-

ness of this problem is based on a reduction from 3-SAT prob-

lem (similar to the formal proof in [9]). In our paper, we omit

the proof due to space limitation. To address this challenge,

we propose an approximative NOCP (ANOCP) approach.

Define Rlb(x, T ) , 1
U

∑
i∈U

∑
f∈F Pfi[

max(Sf
rec−E(Sfi),0)

S
f
rec

].

Comparing R(x, T ) to Rlb(x, T ), the difference is that the

former expression has the item E[max(Sf
rec − Sfi, 0)] which

is in a non-linear form. The latter has the item max[Sf
rec −

E(Sfi), 0] (or equivalently max[E(Sf
rec − Sfi), 0]) which can

be converted to a linear form. By mathematical analysis,

one can prove that Rlb(x, T ) ≤ R(x, T ). More specifically,

if Sf
rec > E(Sfi), max(Sf

rec − E(Sfi), 0) ≤ E(max(Sf
rec −

Sfi, 0)). Thus, Rlb(x, T ) ≤ R(x, T ). If Sf
rec ≤ E(Sfi),

max(Sf
rec − E(Sfi), 0) = 0. By considering any arbitrary

number of statistics experiments, for the possible outcome one

can show that max(Sf
rec−E(Sfi), 0) ≤ E(max(Sf

rec−Sfi, 0))
also holds. The details are provided in [9].

Using Rlb(x, T ), for fixed T , define an ANOCP problem

R∗
lb(T ) , min

x

Rlb(x, T )|(2c)− (2e).

It is interesting to examine if there can be theoretical guarantee

of the difference of NOCP and ANOCP. This boils down

to two objective functions and the variable Sfi is the only

factor that affects the value difference of the two. The value

of Sfi depends on the caching decisions of file f . The

caching decision of file f at user i influences other files’

caching decisions at this user because the cache capacity is

fixed. Thus, by taking into consideration the cache capacity

constraints, the values of R(x, T ) and Rlb(x, T ) are not

monotonic in xfi. Due to cache capacity, it is hard to derive a

theoretical guarantee on the difference of the two. In spite of

the above difficulty, in the performance evaluation section, we

numerically evaluate the difference of the two expressions.

To obtain the global optimal solution of ANOCP, we intro-

duce binary variable ykfi that is one if and only if user i caches

k segments of file f . By definition, if xfi = k, then ykfi = 1.

For example, if xfi = 2, then y2fi = 1 and ykfi = 0 for k 6= 2.

Thus, xfi =
∑Sf

rec

k=0 ky
k
fi. Define ekfij , E(min(BMij , k)).

For any xfj , E(min(BMij , xfj)) =
∑Sf

rec

k=0 e
k
fijy

k
fj . As a

result, ANOCP can be reformulated mathematically as shown

in (3), where Nfi = Sf
rec −

∑
j∈U ,j 6=i

∑Sf
rec

k=0(e
k
fijy

k
fj) −∑Sf

rec

k=0(ky
k
fi). The objective function and constraints in (3) are

linear with respect to y. Thus, the global optimal solution, de-

noted by y
∗, can be obtained via using an off-the-shelf integer

programming algorithm. Then, y
∗ can be straightforwardly

converted into x, referred to as xlb.
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min
y

1

U

∑

i∈U

∑

f∈F

Pfi

N ′
fi

Sf
rec

(3a)

s.t. N ′
fi ≥ Nfi, i ∈ U , f ∈ F (3b)

N ′
fi ≥ 0, i ∈ U , f ∈ F (3c)

Sf
rec∑

k=0

ykfi = 1, i ∈ U , f ∈ F (3d)

∑

f∈F

Sf
rec∑

k=0

kykfi ≤ Ci, i ∈ U (3e)

∑

i∈U

Sf
rec∑

k=0

kykfi ≤ Sf
max, f ∈ F (3f)

ykfi ∈ {0, 1}, i ∈ U , f ∈ F , k ∈ [0, Sf
rec] (3g)

Lemma 5. For any T ′, denote by x
′ and x

′
lb the opti-

mal solutions of R∗(T ′) and R∗
lb(T

′), respectively. We have

R(x′
lb, T

′) ≥ R(x′, T ′) ≥ Rlb(x
′
lb, T

′).

Proof. As x
′ and x

′
lb are the optimal solutions of R∗(T ′)

and R∗
lb(T

′), respectively, R(x′
lb, T

′) ≥ R(x′, T ′) and

Rlb(x
′, T ′) ≥ Rlb(x

′
lb, T

′) for two minimization prob-

lems. Additionally, R(x′, T ′) ≥ Rlb(x
′, T ′). Therefore,

R(x′
lb, T

′) ≥ R(x′, T ′) ≥ Rlb(x
′
lb, T

′).

Lemma 6. R∗
lb(T ) is monotonically decreasing in T .

Proof. Suppose T1 < T2. Denote by x
1
lb and x

2
lb the optimal

solutions of R∗
lb(T1) and R∗

lb(T2), respectively. For any x,

Rlb(x, T ) is a monotone decreasing function in T (the proof

is omitted due to space limitation). For example, if x = x
1
lb,

Rlb(x
1
lb, T1) ≥ Rlb(x

1
lb, T2). In addition, Rlb(x

1
lb, T2) ≥

Rlb(x
2
lb, T2). Thus, Rlb(x

1
lb, T1) ≥ Rlb(x

2
lb, T2).

By Lemma 6, a bisection algorithm can be used to

find T ∗
lb = argminT {R

∗
lb(T ) = R′}, and x

∗
lb =

argmin
x
Rlb(x, T

∗
lb)|(2c)− (2e). The algorithmic flow is pre-

sented in Algorithm 1. If R∗
lb(Tmax) > R′, then R∗(Tmax) >

R′. Thus, for any T < Tmax, R∗(T ) > R′ as R∗(T ) is

monotonically decreasing in T . That is, for any T , constraint

(2b) cannot be satisfied, resulting in infeasibility.

Algorithm 1: The bisection algorithm

Input: Tmin, Tmax, and ǫ > 0.

Output: T ∗
lb and x

∗
lb

1: while Tmax − Tmin > ǫ do

2: T ∗
lb ← (Tmax + Tmin)/2

3: if (R∗
lb(T

∗
lb)−R′)(R′ −R∗

lb(Tmin)) < 0 then

4: Tmin ← T ∗
lb

5: else

6: Tmax ← T ∗
lb

7: x
∗
lb ← argmin

x
Rlb(x, T

∗
lb)|(2c)− (2e)

Theorem 7. T ∗
lb is a lower bound of T ∗, i.e., T ∗

lb ≤ T ∗.

Proof. The result follows from R∗(T ∗
lb) ≥ R∗

lb(T
∗
lb)

(Lemma 5), R∗
lb(T

∗
lb) = R∗(T ∗) = R′, and Lemma 3.

By Lemma 5, R(x∗
lb, T

∗
lb) ≥ R′, manifesting that [x∗

lb, T
∗
lb]

is not a feasible solution of DOCP. However, by Theorem 7,

it can serve the purpose of performance benchmarking of any

sub-optimal algorithm, such as Algorithm 2, because the gap

to T ∗ is less than the gap to T ∗
lb.

Although off-the-shelf integer linear programming algo-

rithms can obtain solutions for up to medium-size scenarios,

the computation complexity does not generally scale. Because

of this, we propose a relaxation-rounding approach that uses

continuous variables via relaxing the integer requirement of

ykfi, resulting in a linear programming problem, which is

polynomial-time solvable (e.g., by the ellipsoid method [13]).

By the relaxation, ykfi ∈ [0, 1] and
∑Sf

rec

k=0 y
k
fi = 1. Denote the

optimum of the relaxed problem by yc. We apply rounding to

yc. Specifically, for any pair of f and i, exactly one of the

variables ykfi (k = 0, 1, . . . , Sf
rec) is rounded to 1. For each

variable, we use its current value, which is between 0 and 1,

as its probability of being selected. The other variables are set

to be zeros. The corresponding integer solution is then easily

derived. By using this approach to solve R∗
lb(T ), Algorithm 1

has another pair of output results, denoted by T ∗
c and x

∗
c .

Algorithm 2: The ESA Algorithm

Input: T , x, η, ǫ > 0, and η > ǫ.
Output: Tso and xso

1: Tso ← T and xso ← x

2: while R(xso, Tso) > R′ and η > ǫ do

3: Tso ← Tso + η
4: if Tso > Tmax then

5: Tso ← Tso − η
6: η ← η/2
7: xso ← argmin

x
Rlb(x, Tso)|(2c)− (2e)

As the next step, we propose an effective search algorithm

(ESA), given in Algorithm 2, to derive a sub-optimal solution

of DOCP and the corresponding objective function value, de-

noted by xso and Tso, respectively. Initially, for the input values

of T and x, there are two cases. The first case is T = T ∗
lb and

x = x
∗
lb. Another case is T = T ∗

c and x = x
∗
c . If the first case

is selected as inputs, solving argmin
x
Rlb(x, Tso)|(2c)− (2e)

in line 7 uses the integer programming approach. Otherwise,

solving argmin
x
Rlb(x, Tso)|(2c) − (2e) uses the relaxation-

rounding approach. The performance evaluation section will

compare the performance of the two approaches. In each

iteration, we increase Tso with step length η. If Tso > Tmax,

Tso is recovered to the value of last iteration and η is reduced

by a half. As R∗(Tso) ≤ R(xso, Tso), R
∗(Tso) ≤ R∗(T ∗). By

Lemma 3, Tso ≥ T ∗.

IV. PERFORMANCE EVALUATIONS

The effectiveness of the ESA algorithm is evaluated by

comparing it to the lower bound of global optimum and

conventional caching algorithms, i.e., random caching [14]

and popular-based caching [15]. The file request probability

follows a Zipf distribution with shape parameter γi for user

i, i.e., Pfi = f−γi/
∑

k∈F k−γi . The number of segments

to recover a file f , Sf
rec, is randomly selected in [1, 3], and

Sf
max = 3Sf

rec. We use a Gamma distribution Γ(4.43, 1/1088)
[8] to generate the average number of contacts per unit time

for users i and j, i 6= j, λij . In the simulations, Ci and γi
are uniform for all i, namely, Ci = C and γi = 0.8. Besides,
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Figure 1. Gaps of all possible caching decisions for a small scenario.

Tmin = 0, Tmax = 400, η = 1, and ǫ = 10−6. Our data sets

are available at [16].

A numerical experiment is conducted to evaluate the differ-

ence of the two expressions for a small scenario in which the

number of users is three and the number of files is eight. The

histogram in Fig. 1 shows the value difference of the two for all

possible caching decisions of all the users and files. It can be

observed that for almost half of the possible caching decisions

the value difference is 0, and the maximum difference is less

than 8%. This observation manifests that the approximation

is satisfactory, and further supports problem-solving using the

approximation, in particular in view of that the approximation

overcomes the difficulty of non-linearity.

Fig. 2 shows the impact of C on delay. In this figure,

we use the term ILP to refer to the integer programming

based solution. We use RRA to denote the relaxation-rounding

based solution. The values of lower bound represent the results

of T ∗
lb. As expected, the delay decreases with respect to C.

The ESA algorithm surpasses the two conventional caching

algorithms. This is because the latter algorithms do not exploit

user mobility. To further validate the effectiveness of the pro-

posed algorithm, we consider a much larger scenario in which

Nu = 30, Nf = 1500, R′ = 0.75, and the other parameters

are kept the same as for Fig. 2. By increasing C from 5 to 8,

for the ILP, the ranges of improvement are [25.0%, 29.8%]
and [67.3%, 84.4%] over the popular and random caching

algorithms, respectively. For the RRA, the ranges of im-

provement are [11.5%, 14.9%] and [61.4%, 81.1%] over the

popular and random caching algorithms, respectively. These

improvements are larger than those for the small scenario

in Fig. 2. Hence, the algorithm is suitable for large-scale

optimization. In addition, there is another observation that ILP

achieves better performance than RRA. This is because the

former pays the price of higher complexity due to the use of

integer programming. In contrast, the latter is a polynomial

time, which can be regarded as a tradeoff between complexity

and accuracy.

V. CONCLUSIONS

This letter has modelled a DOCP problem considering

the impact of mobility. A lower bound of global optimum

of DOCP has been derived. For problem-solving, the ESA

algorithm has been developed. The ESA algorithm leads to

significant improvement over conventional caching algorithms.
APPENDIX

Suppose that T1 < T2. For any x, R(x, T2) −
R(x, T1) = 1

U

∑
i∈U

∑
f∈F

Pfi

S
f
rec

(g(T2) − g(T1)), where

g(T ) = E[max(Sf
rec−Sfi, 0)]. Define ∆g , g(T2)− g(T1) =

5 6 7 8 9
C

25

45

65

85

105

125

D
el

ay

Random caching
Popular-based caching
ESA (RRA)
ESA (ILP)
Lower bound

Figure 2. Impact of C when B = 2, R′ = 0.7, Nf = 150, and Nu = 20.

∑Sf
rec−1

b=0 (Sf
rec − b)[Pr(S2

fi = b) − Pr(S1
fi = b)]. We use

mathematical induction to prove ∆g ≤ 0. When Sf
rec = 1,

∆g = Pr(S2
fi = 0) − Pr(S1

fi = 0) =
∏

j∈U ,j 6=i e
−λijT2 −∏

j∈U ,j 6=i e
−λijT1 < 0. Now, assume that ∆g ≤ 0 holds for

Sf
rec = k. Namely, ∆g =

∑k−1
b=0 (k−b)[Pr(S2

fi = b)−Pr(S1
fi =

b)] ≤ 0. When Sf
rec = k+1, ∆g =

∑k

b=0(k+1− b)[Pr(S2
fi =

b) − Pr(S1
fi = b)] =

∑k

b=0[Pr(S2
fi = b) − Pr(S1

fi = b)] +∑k−1
b=0 (k−b)[Pr(S2

fi = b)−Pr(S1
fi = b)]. Under the same con-

ditions, the number of collected segments in T2 is no less than

that in T1. Hence,
∑Sf

max

b=k+1 Pr(S2
fi = b) ≥

∑Sf
max

b=k+1 Pr(S1
fi =

b). That is, 1 −
∑k

b=0 Pr(S2
fi = b) ≥ 1 −

∑k

b=0 Pr(S1
fi = b).

Therefore,
∑k

b=0 Pr(S2
fi = b) ≤

∑k

b=0 Pr(S1
fi = b), leading

to ∆g ≤ 0. Based on the above proof, we can conclude

R(x, T2) ≤ R(x, T1) when T2 > T1, proving that R(x, T ) is

a monotone decreasing function with respect to T . Moreover,

it is obvious that the function is continuous.
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