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Distributing Complexity: A New Approach to

Antenna Selection for Distributed Massive MIMO
Harun Siljak, Irene Macaluso, and Nicola Marchetti

Abstract—Antenna selection in Massive MIMO (Multiple Input
Multiple Output) communication systems enables reduction of
complexity, cost and power while keeping the channel capacity
high and retaining the diversity, interference reduction, spatial
multiplexity and array gains of Massive MIMO. We investi-
gate the possibility of decentralised antenna selection both to
parallelise the optimisation process and put the environment
awareness to use. Results of experiments with two different power
control rules and varying number of users show that a simple
and computationally inexpensive algorithm can be used in real
time. The algorithm we propose draws its foundations from self-
organisation, environment awareness and randomness.

Index Terms—Distributed Massive MIMO, antenna selection,
optimisation, self-organisation.

I. INTRODUCTION

C
OMBINING the classical idea of antennas distributed in

space [1] and the new concept of massive MIMO antenna

systems [2], distributed massive MIMO offers diversity, spa-

tial multiplexing opportunities, interference suppression and

redundance [3]. The question of redundance and the number

of antennas needed to operate in a certain environment can

be answered under certain conditions [4], and it reinforces the

importance of antenna selection. Antenna selection in Massive

MIMO system can help with power optimisation, complexity

reduction and provide a set of antennas available for other

purposes, e.g. nulling [5]. Of course, a trade-off between these

benefits exists [6] and different objectives and performance

measures are used, from spectral efficiency and constructive

interference [7] to fairness measures [8]. Other factors are also

taken into account, such as the circuit power consumption [9].

Another aspect investigated is the difference between FDD

(frequency division duplex) and TDD (time division duplex)

in terms of CSI (channel state information) collection, which is

essential for antenna selection [10]. These algorithms are most

often centralised and based on co-located antenna systems.

A large number of antenna selection algorithms for MIMO

(and recently massive MIMO) has been proposed over the last

15 years, one of the first being the removal of antennas highly

correlated with other antennas in the selected set [11]. Several

approaches were based on the greedy principle: in [12], the

authors proposed an iterative algorithm that starts from an
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empty set of selected antennas and in each turn picks the

antenna that contributes the most to the capacity of the selected

antennas set. Its dual, i.e. the algorithm that starts with all the

antennas and removes those that contribute the least iteratively,

has been presented in [13]. Both algorithms terminate once

the desired number of selected antennas is reached. A case

for environment-ignoring random selection was made as well,

pointing out that for a large number of selected antennas it

is comparable to other selection procedures [14], which has

been observed in practice for planar co-located massive MIMO

[15]. To exemplify the various approaches used, we note

that methods using convex optimisation [16], combinatorial

optimisation [17], genetic algorithm [8] have been proposed.

In this letter we propose a novel distributed, local

environment-aware antenna selection algorithm based on sum-

capacity maximisation. The aim is to achieve sum rates compa-

rable to those achievable through the use of more computation-

ally complex centralised algorithms and allow flexibility and

adaptability of the scheme. By distributing the computation

over the nodes, we reduce computational complexity and allow

the systemic complexity to enhance the performance.

II. THE ANTENNA SELECTION ALGORITHM

We consider the scenario of downlink (transmit) antenna

selection at the distributed massive MIMO base station with

NT antennas. In the cell there are NR single antenna users

and we aim at maximising the sum-capacity

C = max
P,Hc

log
2
det

(

I+ f(ρ, NTS , NR)HcPHc
H
)

(1)

where I is NTS × NTS identity matrix, P is a diagonal

NR ×NR matrix describing the power distribution and Hc is

the NTS×NR channel matrix representing a selected subset of

antennas from a set of NT antennas (NT ≥ NTS) represented

in the channel matrix H, sized NT × NR [15]. The term

f(ρ, NTS , NR) represents the transmission power factor from

the downlink channel model

y =
√

f(ρ, NTS , NR)Hcz+ n (2)

with y being the NR × 1 received vector, z being the NT × 1
transmit vector and n representing the noise vector; ρ is the

signal to noise ratio (SNR) at each user.

There are two ways the power can be managed in down-

link, and we address them both. One is harvesting the ar-

ray gain by improving the SNR at the user side by taking

f(ρ, NTS , NR) = ρNR (power control A), while the other

harvests the array gain as a means of reducing transmit power,
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achieved through taking f(ρ, NTS, NR) = ρNR/NTS (power

control B). In both cases, the increase in the number of

users increases the transmit power. These two optimisation

problems are fundamentally different. The problem using the

power control A is akin to the receiver antenna selection.

This problem can be solved using greedy algorithms with a

guaranteed (suboptimal) performance bound, simply adding

antennas in an initially empty set of selected antennas based

on the contribution to the sum rate they bring in. The problem

with model B is that it is not submodular (in particular, not

monotonic) [18]. This means that the addition of an antenna in

the selected set of antennas can decrease channel capacity, and

greedy algorithms cannot provide performance guarantees.

The optimisation problem we are solving is twofold. We

are looking for both the subset of the total set of available

antennas and for the optimal power distribution over them.

Following the practice from [15], we initially assume all

diagonal elements of P equal to 1/NR (their sum is unity,

making the total power equal to f(ρ, NTS , NR)), perform

the antenna selection and then perform the selection of matrix

P using water filling for zero forcing. The choice of zero

forcing for precoding was a matter of practicality, the antenna

selection algorithm we propose is independent of the channel

model or the precoding scheme.

In the following explanation of the algorithm we will use the

term neighbourhood for the set of k elements/antenna indices

denoting the k nearest neighbours of an antenna (Di: the ith
antenna’s neighbourhood). Neighbourhood of an antenna A is

shown in Fig. 1. Flag bit fj represents the on/off state our

algorithm proposes for the jth antenna in an iteration.

Our local algorithm is motivated by a simple model in

which every antenna communicates with its neighbourhood to

determine whether it should participate in the set of selected

antennas Si from the neighbourhood Di or not, i.e. Si =
{j ∈ Di|fj = 1}. Each antenna element node calculates the

sum-capacity with power model B for the currently selected

set of antennas from its neighbourhood, and then for this set

augmented with its antenna.1 If the latter is larger than the

former, the node sets its flag to one (else, it resets to zero).

Starting from a random selection of antennas, this simple

rule in principle organises the antennas either into a stable

configuration or an oscillation between two configurations. As

these state(s) may be a local but not a global maximum of the

achievable sum rates, we introduce a mutation flipping every

(1/pM )th flag on average. In case of long coherence intervals,

the mutation happens often as the algorithm gets a chance to

run longer on the same CSI. In our case, it was a rare event

as we assumed a short coherence period.2

The algorithm runs on the same CSI for a prescribed number

of iterations Ni. After the last iteration, antennas turn on and

off to form the configuration from the iteration that had the

1The calculation of local sum capacity using power control B is important
for the algorithm as the case of control A would allow every antenna to join
and improve the selected set by just adding more power to it. Control B allows
only the antennas improving the information content to join in.

2While the mutation bears resemblance to the genetic algorithm approach
in [8], the core process is different. In our algorithm, we converge to the best
antenna selection by a simple but directed search strategy. In addition to that,
we use the local measure of the capacity as the selection criterion.

Algorithm 1 The proposed local antenna selection procedure

1) Start from a random seed of n flags “on”, the rest being “off”.
2) For each antenna i, 1 ≤ i ≤ NT perform the following:

a) Calculate the sum-capacity Ci− of the system with the channel
matrix HSi

(the antennas in Si)

b) Calculate the sum-capacity Ci+ of the system HSi∪i

c) Compare the two values: if Ci+ > Ci−, the antenna in question
should be selected (i.e. on). Otherwise it should be off.

3) Update the flags fi of each of the NT antennas to the result of 2(c) or
its opposite, if a random mutation occurs (with a probability of pM ).
Store the current configuration.

4) Repeat Ni times steps 2 and 3 before updating the physical state of
the antennas (on and off) to the flag state that resulted in the highest
total capacity.

5) Repeat steps 2-4.
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Fig. 1. 64 distributed transmitters in the area which included 75 randomly
distributed scatterers and one large obstacle. The number of (randomly
distributed) users varied from 4 to 16. We used 300 OFDM subcarriers,
SNR ρ = −5 dB, 2.6 GHz carrier frequency, 20 MHz bandwidth and
omnidirectional antennas for transmitters and receivers.

highest total capacity over all antennas. Changing the physical

state of the antennas after each iteration is inefficient: this

is why we work with flag bits. Size of Ni depends on the

coherence interval.

Algorithm 1 presents the self-organising behaviour we de-

scribed. We dub the algorithm local to emphasise the locality

of computation and perspective.

III. SUM RATES: LOCAL VS. GREEDY ALGORITHM

The algorithm was tested using raytracing Matlab tool

Ilmprop [19] on a system composed by 64 antennas randomly

distributed in space at the same height and shown in Fig. 1. In

all computations, CSI was normalised to unit average energy

over all antennas, users and subcarriers [15].

The two power control scenarios described before are tested

and the results are shown in Fig. 2 (16 users case omitted

for clarity in the second scenario plot). A clear difference

between the results of local antenna selection and random

selection of antennas was expected: while such a difference is

often not detectable in the case of planar co-located massive

MIMO, the distributed case is closer to cylindrical arrays in

this sense, antennas being more far apart [15]. The curve

representing the local antenna selection shows the highest sum

rate values obtained for different numbers of selected antennas.

It is compared with the sum rates obtained for the average

random case of choosing the same numbers of antennas and

the results of the previously described greedy algorithm (the

one starting with an empty set of antennas [12]). The sum

rates obtained through the proposed local algorithm are on

par (even marginally better) as those obtained through the
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Fig. 2. Antenna selection effects on ZF sum rate for different number of
users in scenarios with power control A and B
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Local, 300 subs
Local, 300 subs (δ CSI)
Local, 15 random subs
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Local, 60 strongest subs

Fig. 3. ZF sum rate for different antenna selection algorithms in 8 users case
with power control A represented as the additional sum rate with respect to
random selection. δCSI: variation of 30% in imperfect CSI measurement.

greedy algorithm (very low antenna counts for which our

algorithm gives zero rates are not relevant, as they are within

NTS . NR range, not enabling proper beamforming for

all users). The proposed local selection mechanism achieves

a comparable performance to the greedy selection, while

reducing the computational complexity.

IV. COMPUTATIONAL AND SYSTEMIC COMPLEXITY

A. Computational Complexity

Theorem 1. The worst case complexity of the proposed

algorithm is O(Nω
T ), where ω, 2 < ω < 3 is the exponent

in the employed matrix multiplication algorithm complexity.3.

Proof: We first note that det(I +AB) = det(I + BA)
for properly sized identity matrices I on both sides (Sylvester

identity), so we can shift from NT × NT matrix HHH

to a smaller NR × NR matrix HHH. The total number

of matrix multiplications is 2Ni and they would be con-

ducted using some of the standard algorithms with complexity

O(Nω−1

R NT ), 2 < ω < 3 [20]4. This brings the multiplication

complexity of our algorithm to O(NiN
ω−1

R NT ). In the worst

case NR = NT , and since Ni = const we obtain the com-

plexity of O(Nω
T ). The number of determinant calculations is

constant (O(Ni)), so the overall complexity is O(Nω
T ).

3It is not always feasible to use the multiplication algorithm with the lowest
complexity due to large constant factors making it hard to do even a single
iteration: the current lowest complexity algorithms (ω = 2.373) cannot be
implemented in technology at all.

4If two n×n square matrices are multiplied with complexityO(nω), rectan-

gular matrices a×b and b×c are multiplied with complexity O(nω−2

1
n2n3)

where n1 = min(a, b, c) and n1, n2 are the other two dimensions.
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Fig. 4. The relationship between the number of selected antennas and the
number of neighbours taken in the algorithm

Comparing this to the case of the greedy algorithms with

complexity O(N2

TN
2

R) [13] and O(NTNRNTS) [12], we see

that the complexity is reduced: the effect is best seen for a

large number of antennas (massive MIMO) where the constant

nature of Ni enables efficient scaling. We also note that NR

and NT in our algorithm consideration are not the entire set of

transmitters and receivers as in the greedy algorithms, but just

a k-neighbourhood of transmitters and the receivers in their

vicinity. Hence, the computational complexity decreases even

more in the practical implementation.

The main computational burden of the single iteration of

both algorithms is the fact that it is repeated for each of the

c OFDM subcarriers. A natural question to ask is whether

we need to optimise over the whole set of subcarriers, and if

a significantly smaller subset could be selected to represent

the channel appropriately. In our study we propose a random

selection of a subcarrier subset and argue that 5% of the

whole set is enough for practical use, based on the results.

This approach gives a good representation of the channel for

the algorithm as the procedure is repeated Ni times, allowing

most of the subcarriers to appear in different iterations and

influence the antenna selection. The alternative is selecting

a fixed number of the subcarriers with the largest average

power over all users. Using any subset of subcarriers could

also speed up the greedy algorithm, but our local selection

algorithm still has lower complexity. Fig. 3 represents the gain

of sum capacity over random antenna selection for eight users

scenario where we compare the results of greedy selection

and three local algorithm variants: the original proposal using

all 300 subcarriers, one with 15 randomly selected subcarriers

and one with 60 strongest subcarriers selected. The random

subcarrier selection variant is computationally superior to both

alternatives. It is marginally better in terms of sum rates and

we can observe from Fig. 3 that its minimum selection sets

are in general smaller than those of the full 300 subcarrier

algorithm. The strongest subset-based variant a limited appli-

cability due to a large minimum number of selected antennas.

Another issue with the growing complexity is the collection

of CSI. It is unrealistic to expect perfect knowledge of CSI,

but as Fig. 3 shows, it is not necessary: a 30% uncertainty in

CSI hs negligible impact on the result of antenna selection.

B. Systemic Complexity: Self-Organisation

Our algorithm does not start with a predefined number of

antennas to be selected, but converges to a subset whose
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size depends on the size of the neighbourhood. This means

that for the comparison with the greedy algorithm shown

in Figs. 2 and 3 we have run the algorithm for varying

numbers of neighbours considered. Fig. 4 shows the size of the

neighbourhood observed and the number of selected antennas

in each of those cases for scenarios with 4 and 12 users (the

other two scenarios omitted for clarity) in the power control

scheme A. The variable parameter is placed on the ordinate

axis to align the graph with Fig. 2.

The figure demonstrates that the smallest number of an-

tennas is selected in the case when a single antenna sees

most of the other antennas as its neighbours, and vice versa,

the largest number of antennas is selected in correspondence

to the smallest neighbourhoods. Small neighbourhoods make

large effort to support all users, hence turning on most of their

antennas, leading to a high total count of selected antennas.

In large neighbourhoods suboptimal antennas keep themselves

out of the selected subset, seeing the better antennas already in.

We also note the characteristic bimodal shape, implying that

in large neighbourhoods the algorithm switches (oscillates)

between small number of selected antennas and roughly 50%

of the total number. This is a consequence of the power control

B we use (cf. the location of maxima of the sum rates in Fig.

2(b)) as roughly half of the antennas do not contribute anything

new once the other antennas are included in the selected set.

In large neighbourhoods, entropy is low as all antennas know

how they fare against other antennas, making them more aware

of the environment and the rest of the system.

Figs. 2 and 4 also show that the minimal number of selected

antennas is not always the number of users: the algorithm

sometimes adds more antennas for better beamforming.

V. CONCLUSIONS

We have presented a novel local antenna selection method

for distributed massive MIMO. Its local nature allows it to be

environment-aware and enables distributed computing at every

node. While reducing the complexity of matrix operations and

distributing it over all antenna nodes, we have additionaly

reduced computational complexity by using a very small

subset of subcarriers for optimisation, reducing the time cost

by 20 times. This reduction resulted in both enabling the real-

time application of the algorithm in dynamic environments

with short coherence time and retaining sum-rates on par with

other antenna selection algorithms.

Relying on self-organisation, this algorithm emphasises the

local properties of distributed massive MIMO and supports

its modularity, namely the option of cluster separation and

distributed control. The distributed control aspect allows user

selection aided by our algorithm for users close to a neigh-

bourhood cluster, and also the service consolidation in case

of device failures within a cluster. The neighbouring antennas

are aware of local faults and organise themselves accordingly

in an emergent manner, building up on the inherent systemic

complexity of the antenna selection algorithm. The clusters

may operate on their own and/or interact with other clusters,

depending on the set neighbourhood size.

The local selection algorithm relies on randomness in two

ways. Randomly selecting subcarriers to do the optimisation

on, it keeps the diversity of the full subcarrier set while

reducing computation time. Randomly performing mutations

on state transitions, it allows leaving local maxima.

The reduced computational complexity and environment

awareness enable a flexible real time application. Being inde-

pendent from precoding choice, channel model and the form

of power control, the algorithm has been shown to perform

well in two different variants of transmit antenna selection.
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