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Downlink coverage probability in cellular networks with

Poisson-Poisson cluster deployed base stations
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Abstract

Poisson-Poisson cluster processes (PPCPs) are a class of point processes exhibiting attractive point

patterns. Recently, PPCPs are actively studied for modeling and analysis of heterogeneous cellular

networks or device-to-device networks. However, surprisingly, to the best knowledge of the author, there

is no exact derivation of downlink coverage probability in a numerically computable form for a cellular

network with base stations (BSs) deployed according to a PPCP within the most fundamental setup such

as single-tier, Rayleigh fading and nearest BS association. In this paper, we consider this fundamental

model and derive a numerically computable form of coverage probability. To validate the analysis, we

compare the results of numerical computations with those by Monte Carlo simulations and confirm the

good agreement.

Keywords: Downlink cellular networks, spatial stochastic models, Poisson-Poisson cluster processes,

coverage probability.

1 Introduction

Poisson-Poisson cluster processes (PPCPs) are a class of point processes (PPs) exhibiting attractive (clus-

tering) point patterns (see, e.g., [1]). A stationary PPCP is constructed by independent, identical and

finite Poisson point processes (PPPs), called daughter processes, placed around points of a homogeneous

PPP, called a parent process (detailed in the next section). Recently, PPCPs are actively studied for mod-

eling and analysis of heterogeneous cellular networks (HetNets) or device-to-device (D2D) networks (see,

e.g., [2–9]). This is because locations of small (pico or femto) base stations (BSs) in HetNets or user devices

in D2D networks are distributed in a clustering nature in user hotspots. However, surprisingly, to the best

knowledge of the author, there is no exact derivation of downlink coverage probability in a numerically

computable form for a cellular network with BSs deployed according to a PPCP within the most fundamen-

tal setup such as single-tier, Rayleigh fading and nearest BS association. In this paper, we challenge this

fundamental problem.

Indeed, there are several related results. Suryaprakash et al. [2] and Deng et al. [3] study two-tier
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HetNets, where macro BSs are deployed according to a homogeneous PPP and small BSs are according

to a PPCP. Both of [2] and [3] derive the Laplace transform of downlink interference and, using this,

conditional downlink coverage probability given the distance to the serving BS. One may think that our

fundamental problem is covered by their results combined with the distribution of contact distance (distance

to the nearest point from the origin) of PPCPs derived in [10, 11] (as suggested in [12]). However, the

problem is not so optimistic because we have to take into account the correlation between the locations of

the serving BS and the interferers through the sharing parent point (PPCPs do not have the property of

independent increments unlike PPPs). Chun et al. [4] consider a K-tier downlink HetNet, where BSs in

each tier are deployed according to a PPCP. They, however, assume orthogonal multiple access and do not

consider interference from BSs in the same cluster as the serving BS. Saha et al. [5] extensively investigate

several models of HetNets using PPPs and PPCPs. Though their models cover one of the most fundamental

settings as a special case, a difference from ours is that they consider the max-SIR association, where a

user is associated with the BS offering the maximum signal-to-interference ratio (SIR). In the max-SIR

association, one does not have to consider the distribution of distance to the serving BS. On the other hand,

the nearest BS association is the single-tier homogeneous version of max-averaged-power association, where a

user is associated with the BS from which the user receives the maximum signal power averaged over fading.

Afshang and Dhillon [6] also consider a model of two-tier HetNets, where locations of users and small BSs are

both distributed according to PPCPs with the same parent process while macro BSs are deployed according

to an independent PPP. In their model, a user can connect to any macro BSs but to the small BSs with

the same parent point. For D2D networks, Afshang et al. [7], Yi et al. [8] and Joshi and Mallik [9] consider

the models, where user devices are distributed according to a PPCP and a device communicates only with

another device in the same cluster.

We here consider the most fundamental setup of downlink cellular networks, where single-tier BSs are

deployed according to a PPCP. Under the assumption of Rayleigh fading and the nearest BS association,

we derive a numerically computable form of coverage probability. To do this, we first derive the conditional

coverage probability given the parent process. Since a PPCP is in the class of Cox (doubly stochastic Poisson)

processes (see, e.g., [13]), it is conditionally an inhomogeneous PPP provided the parent process. Therefore,

we can apply the discussion for PPP networks and then arrive at the goal by unconditioning. To validate

the analysis, we compare the results of numerical computations with those by Monte Carlo simulations.

2 Poisson-Poisson cluster processes

A stationary PPCP on R
2 is constructed by an independently marked homogeneous PPP as follows. Let

Φ(p) = {Xi}i∈N denote a homogeneous PPP on R
2, called a parent process, with intensity λp. A mark

Ψi = {Yi,j}j∈N of the point Xi is a finite (therefore inhomogeneous) PPP on R
2, called a daughter process,

with intensity function λd(x), x ∈ R
2, satisfying

∫

R2 λd(x) dx = α; that is, the number of daughter points per
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parent follows a Poisson distribution with mean α. Then, a PPCP is given as Φ = {Zi}i∈N =
⋃

i∈N
{Xi+Ψi},

which is stationary with intensity λpα. Throughout this paper, we focus on radially symmetric daughter

processes, so that λd(x) = αfd(‖x‖) and Φ is isotropic as well. Two main examples of the PPCPs are

the (modified) Thomas PP (TPP) and the Matérn cluster process (MCP) (see, e.g., [13]). When fd(s) =

f
(TPP)
d (s) = exp{−s2/(2σ2)}/(2πσ2), σ > 0, the PPCP is called the TPP, where daughter points are

independently and normally distributed around each given parent point with covariance matrix σ2I (I

denotes the identity matrix). On the other hand, when fd(s) = f
(MCP)
d (s) = 1[0,rd](s)/(πrd

2), rd > 0, the

PPCP is called the MCP, where daughter points are independently and uniformly distributed on the ball

of radius rd centered at each given parent point. PPCPs are a class of Cox PPs, so that, when the parent

process Φ(p) = {Xi}i∈N is provided, the PPCP Φ is conditionally an inhomogeneous PPP with the shot-noise

intensity function;

λ(y | Φ(p)) =

∞
∑

i=1

λd(y −Xi) = α

∞
∑

i=1

fd(‖y −Xi‖), y ∈ R
2. (1)

For a stationary PP Φ on R
2, contact distance of Φ is defined as the distance from an arbitrary fixed

reference point on R
2 to the nearest point of Φ. Here, due to the stationarity, we can choose the origin

o = (0, 0) as the reference point. The conditional distribution of the contact distance given the parent

process is derived as follows.

Lemma 1 Let Φ denote a PPCP described above. The conditional distribution function of contact distance

of Φ provided the parent process Φ(p) = {Xi}i∈N is given by

Fcd(r | Φ(p)) = 1 −

∞
∏

i=1

exp
{

−αG(r | ‖Xi‖)
}

, (2)

where G(r | s) = 2
∫ r

0

∫ π

0
u fd

(
√

u2 + s2 − 2 us cosφ
)

dφdu. Furthermore, the corresponding conditional

density function is given by

fcd(r | Φ(p)) = α

∞
∑

i=1

g(r | ‖Xi‖)

∞
∏

i=1

exp
{

−αG(r | ‖Xi‖)
}

, (3)

where g(r | s) = ∂G(r | s)/∂r = 2 r
∫ π

0
fd
(
√

r2 + s2 − 2 rs cosφ
)

dφ.

Proof: Let bo(r), r > 0, denote the ball on R
2 centered at the origin with radius r. When the parent process

Φ(p) = {Xi}i∈N is provided, Φ is (conditionally) an inhomogeneous PPP with the intensity function given in

(1). Therefore, the conditional probability that Φ has no points in bo(r) is given by

P
(

Φ
(

bo(r)
)

= 0
∣

∣ Φ(p)
)

=

∞
∏

i=1

exp
{

−α

∫

bo(r)

fd(‖y −Xi‖) dy
}

.

Putting y = (u cosφ, u sinφ) and Xi = (Xi,1, Xi,2) in the integral on the right-hand side above yields

∫

bo(r)

fd(‖y −Xi‖) dy =

∫ r

0

∫ 2π

0

u fd

(
√

(u cosφ−Xi,1)2 + (u sinφ−Xi,2)2
)

dφdu
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= G(r | ‖Xi‖),

which leads to (2) since Fcd(r | Φ(p)) = 1 − P
(

Φ
(

bo(r)
)

= 0
∣

∣ Φ(p)
)

. Differentiating (2) with respect to r

gives (3).

Note that G(r | ·) and g(r | ·) in Lemma 1 are, respectively, a probability distribution function and the

corresponding density function with respect to r ∈ [0,∞) in the sense that limr→∞ G(r | ‖x‖) =
∫∞

0 g(r |

‖x‖) dr =
∫

R2 fd(‖y− x‖) dy = 1 for any x ∈ R
2. The distribution G(· | s) gives the conditional distribution

of the distance to a daughter point from the origin provided that its parent point is located at x satisfying

‖x‖ = s.

Example 1 (TPP) For the TPP, applying f
(TPP)
d (s) = exp{−s2/(2σ2)}/(2πσ2), the conditional distribu-

tion G(r | s) on the right-hand side of (2) reduces to

G(TPP)(r | s) =
1

σ2

∫ r

0

u exp
(

−
u2 + s2

2σ2

)

I0

(u s

σ2

)

du = 1 −Q1

( s

σ
,
r

σ

)

, (4)

where I0 denotes the modified Bessel function of the first kind with order zero; I0(z) = π−1
∫ π

0
ez cosφ dφ,

and Q1 denotes the first-order Marcum Q-function defined as (see, e.g., [14])

Q1(a, b) =

∫ ∞

b

x exp
(

−
x2 + a2

2

)

I0(a x) dx.

Therefore, differentiating (4) gives the density function;

g(TPP)(r | s) =
1

σ
q
( s

σ
,
r

σ

)

, (5)

where q(a, b) = −∂Q1(a, b)/∂b = b exp
(

−(a2 + b2)/2
)

I0(ab).

Example 2 (MCP) For the MCP, since f
(MCP)
d (s) = 1[0,rd](s)/(πrd

2), the conditional distribution G(r | s)

in (2) reduces to

G(MCP)(r | s) =
2

π rd2

∫ r

0

∫ π

0

u 1
{

cosφ ≥
u2 + s2 − rd

2

2 us

}

dφdu

=
1

rd2

{

[

r ∧ (rd − s)+
]2

+
2

π

∫ r∧(rd+s)

r∧|rd−s|

u arccos
(u2 + s2 − rd

2

2 us

)

du

}

, (6)

where x+ = max(x, 0), x∧y = min(x, y), and we use
∫ π

0 1{cosφ ≥ x} dφ = π 1(−∞,−1](x)+arccosx1(−1,1](x)

in the second equality. Hence, the density function is given as

g(MCP)(r | s) =
2 r

rd2

{

1[0,(rd−s)+](r) +
1

π
arccos

(r2 + s2 − rd
2

2 rs

)

1[|rd−s|,rd+s](r)

}

. (7)

Note that (5) has the same form as (3) in [10] and that (7) does so as the couple of (2) and (3) in [11].

We can obtain the same results as in [10, 11] by plugging (4) or (6) into (2) and then unconditioning it on

Φ(p) with the use of the probability generating functional (PGFL) for PPPs (see, e.g., [13]). In other words,

we have a unified form of contact distance distributions for PPCPs as

Fcd(r) = 1 − exp

{

−2 πλp

∫ ∞

0

[

1 − exp
{

−αG(r | s)
}]

s ds

}

, r ≥ 0.
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3 Coverage probability for a downlink cellular network

We consider a fundamental model of single-tier homogeneous downlink cellular networks. Let Φ = {Zi}i∈N

denote a stationary PP on R
2 representing locations of BSs, where the order of the points is arbitrary but

Z1 is the nearest from the origin; that is, ‖Z1‖ < ‖Zi‖ for i ≥ 2. All the BSs transmit signals at the same

power level and each user is associated with the nearest BS. Due to the stationarity and homogeneity, we can

focus on a typical user located at the origin. For each i ∈ N, let Hi denote a nonnegative random variable

representing a fading effect on a signal from the BS at Zi to the typical user, where we assume Rayleigh

fading and Hi, i ∈ N, are mutually independent and exponentially distributed, as well as independent of Φ.

We assume EH1 = 1 without loss of generality and ignore shadowing. The path-loss function representing

signal attenuation with distance is given by ℓ(r), r > 0, which satisfies
∫∞

ǫ
r ℓ(r) dr < ∞ for any ǫ > 0. With

this setup, the SIR for the typical user is defined as

SIRo =
H1 ℓ(‖Z1‖)

∑∞
i=2 Hi ℓ(‖Zi‖)

. (8)

Since Z1 is the nearest point of Φ from the origin, ‖Z1‖ gives the contact distance of Φ. Our interest is in

the coverage probability P(SIRo > θ) for θ > 0 when the PP Φ is given as a PPCP.

Theorem 1 For the downlink cellular network model described above, when the PP Φ is a stationary PPCP

given in Section 2, we have

P(SIRo > θ) = α

∫ ∞

0

T (r, θ)M(r, θ) dr, (9)

where

T (r, θ) = 2 πλp

∫ ∞

0

g(r | s)C(r, s, θ) s ds,

M(r, θ) = exp

{

−2 πλp

∫ ∞

0

[

1 − C(r, s, θ)
]

s ds

}

,

with g(· | ·) given in Lemma 1 and

C(r, s, θ) = exp

{

−α

[

1 −

∫ ∞

r

(

1 + θ
ℓ(u)

ℓ(r)

)−1

g(u | s) du

]}

. (10)

Proof: Since Φ is conditionally an inhomogeneous PPP provided Φ(p) = {Xi}i∈N, we can follow the standard

discussion for the PPP network with Rayleigh fading (see, e.g., [15] for the homogeneous PPP case); that is,

application of (1) and (3) to (8) leads to

P(SIRo > θ | Φ(p)) = E

[ ∞
∏

i=2

(

1 + θ
ℓ(‖Zi‖)

ℓ(‖Z1‖)

)−1
∣

∣

∣

∣

Φ(p)

]

=

∫ ∞

0

fcd(r | Φ(p)) exp

{

−

∫

‖y‖>r

[

1 −
(

1 + θ
ℓ(‖y‖)

ℓ(r)

)−1
]

λ(y | Φ(p)) dy

}

dr, (11)

where we use the distribution function and the Laplace transform of exponential random variables in the first

equality, and the PGFL for (inhomogeneous) PPPs in the second equality. By (1) and g(· | ·) in Lemma 1,
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the integral inside the exponential function above is equal to the sum over i ∈ N of

α

∫

‖y‖>r

[

1 −
(

1 + θ
ℓ(‖y‖)

ℓ(r)

)−1]

fd(‖y −Xi‖) dy = α

∫ ∞

r

[

1 −
(

1 + θ
ℓ(u)

ℓ(r)

)−1]

g(u | ‖Xi‖) du

= α

[

G(r | ‖Xi‖) −

∫ ∞

r

(

1 + θ
ℓ(u)

ℓ(r)

)−1

g(u | ‖Xi‖) du

]

,

where G(r | s) = 1 − G(r | s) and the same discussion as in the proof of Lemma 1 is used. Therefore,

plugging this into (11) and using (3), we reduce (11) to

P(SIRo > θ | Φ(p)) = α

∫ ∞

0

∞
∑

i=1

g(r | ‖Xi‖)

∞
∏

i=1

C(r, ‖Xi‖, θ) dr,

where C is given in (10). Hence, unconditioning on Φ(p), we have

P(SIRo > θ) = α

∫ ∞

0

E

[ ∞
∑

i=1

g(r | ‖Xi‖)
∞
∏

i=1

C(r, ‖Xi‖, θ)

]

dr

= αλp

∫ ∞

0

∫

R2

g(r | ‖x‖)C(r, ‖x‖, θ) dx exp

{

−λp

∫

R2

[

1 − C(r, ‖x‖, θ)
]

dx

}

dr, (12)

where we apply the Campbell-Mecke formula (see, e.g., [13]) by regarding
∏∞

j=1,j 6=i C(r, ‖Xj‖, θ) as a mark

of the point Xi, and then use the PGFL for homogeneous PPPs in the second equality (this type of trans-

form is also used in [16]). It is immediate to see that the right-hand side of (12) is equal to that of

(9). Actually, we have to confirm whether the PGFL is applicable in (12) and this is done by showing

λp

∫

R2

∣

∣logC(r, ‖x‖, θ)
∣

∣ dx < ∞ (see, e.g., [17, pp. 59–60]). By (10), noting that g(· | s) is a probability

density function for any s > 0, we have

∫

R2

∣

∣logC(r, ‖x‖, θ)
∣

∣ dx = 2 πα

∫ ∞

0

[

1 −

∫ ∞

r

(

1 + θ
ℓ(u)

ℓ(r)

)−1

g(u | s) du

]

s ds

= 2 πα

∫ ∞

0

[

G(r | s) + θ

∫ ∞

r

ℓ(u)

θ ℓ(u) + ℓ(r)
g(u | s) du

]

s ds. (13)

For the first term in the integrand above, the symmetry of s g(r | s) = r g(s | r) (see Lemma 1) implies

∫ ∞

0

G(r | s) s ds =

∫ r

0

u du =
r2

2
< ∞,

where we use
∫∞

0 g(s | r) ds = 1. For the second term in the integrand of (13), we have similarly

∫ ∞

0

∫ ∞

r

ℓ(u)

θ ℓ(u) + ℓ(r)
g(u | s) du s ds =

∫ ∞

r

u ℓ(u)

θ ℓ(u) + ℓ(r)
du

≤
1

ℓ(r)

∫ ∞

r

u ℓ(u) du < ∞,

where the last inequality follows from the assumption on the path-loss function.

4 Numerical experiments

Figure 1 and 2 display the comparison results of numerical computations based on our analysis and Monte

Carlo simulations. Throughout the experiments, we fix the path-loss function as ℓ(r) = r−4, r > 0, and the
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Figure 1: Coverage probability in the TPP network with λp = 0.1/π, α = 10.

parameters λp = 0.1/π, α = 10. In both the TPP and the MCP, three cases of E[‖Yi,j‖
2] = 0.6, 1.4, and

3.0 are computed (that is, σ2 = 0.3, 0.7, and 1.5 in the TPP, and rd
2 = 1.2, 2.8, and 6.0 in the MCP). In

each simulation run, samples of parent points are put on the disk with radius 100 and daughter points are

scattered around the parent points. Then, the estimated coverage probability is obtained by average taken

over 20,000 independent copies. The agreement between the theoretical and simulation results supports the

validity of our analysis.

We should notice that the actual numerical computation of the coverage probability using (9) is not

so easy. In particular, the integral inside function M in Theorem 1 hardly converges in a numerical sense

(though the finite existence is ensured in the proof of Theorem 1) and we should take a truncation technique

carefully.

5 Conclusion

We have considered a spatial downlink cellular network model with BSs deployed according to a PPCP and,

within the most fundamental setup such as single-tier, Rayleigh fading and nearest BS association, we have

derived the coverage probability in a numerically computable form. This work does not only fill in a hole

of the literature but also is expected to play a role of a building block for analysis of, for example, HetNets

with a tier consisting of open access small cell BSs.
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Figure 2: Coverage probability in the MCP network with λp = 0.1/π, α = 10.
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