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Association in Load-Balanced HetNet
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Abstract—This letter considers optimizing user association in
a heterogeneous network via utility maximization, which is a
combinatorial optimization problem due to integer constraints.
Different from existing solutions based on convex optimization,
we alternatively propose a cross-entropy (CE)-based algorithm
inspired by a sampling approach developed in machine learning.
Adopting a probabilistic model, we first reformulate the original
problem as a CE minimization problem which aims to learn the
probability distribution of variables in the optimal association. An
efficient solution by stochastic sampling is introduced to solve the
learning problem. The integer constraint is directly handled by
the proposed algorithm, which is robust to network deployment
and algorithm parameter choices. Simulations verify that the
proposed CE approach achieves near-optimal performance quite
efficiently.

Index Terms—Cross-entropy (CE), heterogeneous network
(HetNet), user association, stochastic sampling.

I. INTRODUCTION

Recently, heterogeneous network (HetNet) has become both

an academic and an industrial focus due to its advantage in

enhancing spectral efficiency. HetNet layout equips many low-

power small-cell base stations (SBSs) overlaid with macro-

cell base station (MBS), which helps to promote the network

performance while also coming with multiple challenges.

User association is one of the issues that need to be

reconsidered in HetNet [1]-[4]. Because the transmit power

of MBS is much higher than SBS, most users may stick

to their MBS association based on received signal strength,

which leads to unbalanced load. To make the best use of

the heterogeneous infrastructure, users should be transferred

to lightly loaded SBSs. In this way, users are better served

with more available resource and the entire network bene-

fits. Consequently, balanced user associations are essential in

reaping the benefits of HetNet. Most existing literature, e.g.,

[1]-[3], solved the association problems resorting to convex

optimization including the commonly adopted Lagrangian

dual decomposition and subgradient methods. These methods,

however, are sensitive to algorithm parameters [4], which

hinders wide applications in practice.

In this letter, we investigate the load-balancing association

problem from the machine learning perspective in that the

optimal association is regarded as a random variable whose
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probability distribution is designed to be dynamically learned

via efficient stochastic sampling. The CE approach was firstly

introduced in 1997 [5] and developed in machine learning.

The advantage of the CE approach lies in its adaptive update

procedure [6], which makes it be inherently capable of solv-

ing combinatorial optimization problems in a much simpler

way than typical relaxation techniques. To the best of our

knowledge, this is the first time that CE method is used to

solve the constrained user association problem. Specifically,

the proposed approach first randomly generates candidate

association matrices and chooses some elites by evaluating the

objective values. By refining the probability distributions itera-

tively via CE minimization, this approach yields a near-optimal

association with sufficiently high probability. Compared to

existing methods, our proposed algorithm is more robust, i.e.,

nonsensitive, to network deployment and algorithm parameter

choices. Besides, simulation results verify that the proposed

algorithm achieves near-optimal performance in terms of both

utility rate and load balancing.

II. SYSTEM MODEL

We consider a typical downlink HetNet consisting of I users

and J BSs including MBSs and SBSs. Let I={1, 2, ..., I} and

J ={1, 2, ..., J} denote the sets of users and BSs, respectively.

The received signal-to-interference-plus-noise ratio (SINR) is

SINRij =
hijPj

∑

q 6=j hiqPq + σ2
, ∀i ∈ I, j ∈ J (1)

where hij denotes the channel gain between user i and BS j,

Pj is the transmit power of BS j, and σ2 is the noise power.

Denote binary variables {xij} as the indicator of the as-

sociation between user i and BS j. If user i is associated

with BS j, then xij = 1, otherwise xij = 0. Let W denote

the system bandwidth, which is reused by all BSs. Users

associated with the same BS share the frequency resource.

Assuming a uniform resource allocation among users, the

achievable rate Rij can thus be evaluated as

Rij =
W

∑

i∈I xij

log(1 + SINRij), ∀i ∈ I, j ∈ J . (2)

And we obtain the overall rate of user i as Ri =
∑

j∈J xijRij .

Considering that network utility is the ultimate goal in

providing wireless services, we investigate a utility maximiza-

tion problem in the network via association optimization. Let

Ui(Ri) be the utility function of user i. Multiple typical utility

functions apply depending on the adopted metrics. Specially,

adopting an identity function returns to the common rate max-

imization problem. To achieve load balancing and maximize

total user QoS satisfactory, we choose the typical logarithmic

utility function, by which QoS requirements of users are
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guaranteed in the sense of fairness. However, our proposed

algorithm is a general approach without any preference on the

utility function.

Now, we can formulate the utility optimization problem as:

max
x

∑

i∈I

Ui





∑

j∈J

xijRij



 (3a)

s.t.
∑

j∈J

xij = 1, ∀i ∈ I (3b)

xij ∈ {0, 1}, ∀i ∈ I, j ∈ J (3c)
∑

i∈I

xij ≤ Lj, ∀j ∈ J (3d)

where x=(x11, ..., x1J , ..., xIJ )
T is the user association vector

and Lj is an upper bound which is irrelevant to variable

xij . Constraint (3b) denotes that each user is associated with

a single BS at a time. Note that constraint (3d) intuitively

represents the bound of BS load. By assigning different values

to Lj , it can also be regard as several practical constraints, e.g.,

energy constraint in [7][8].

III. CROSS-ENTROPY APPROACH TO ASSOCIATION

It is worth pointing out that due to the binary constraints

of xij , problem (3) is a combinatorial optimization problem,

which is in general NP-hard [9]. A popular method of cir-

cumventing this difficulty is to make the problem convex by

relaxing {xij} from {0, 1} to continuous in [0, 1], and then

solve the relaxed problem using convex optimization tools.

Its optimality, however, may not be preserved for the original

problem in theory. Besides, most existing solutions based on

convex optimization, e.g., Lagrangian dual decomposition and

subgradient methods, are sensitive to algorithm parameters,

which implies that they can be less efficient in practice.

Obviously, the global optimum of problem (3) can be

obtained by a direct exhaustive search, which has unbearably

computation complexity even in a modest-sized HetNet. To

solve the nonconvex problem in (3), we reformulate the

problem as a probability learning problem and propose a CE-

based solution [10] with the assist of stochastic sampling.

According to our analysis and simulations, the proposed

algorithm requires significantly low complexity compared to

the exhaustive search while achieves near-optimal performance

with comparable complexity of existing convex optimization

methods. The approach applies to all utility functions and

behaves nonsensitively to parameter choices. It can thus be

applied as a competitive alternative to many, not necessarily

convex, user association problems.

A. Problem Formulation of Association Learning

In machine learning field, problems are usually modelled

as probability distribution function (PDF) learning procedure

to find the best distribution that matches the input-output

relationship in training data set. CE approach is a probabilistic

model-based method to solve the learning problem in an

iterative mechanism. In the user association problem in (3), the

aim is to find the optimal x maximizing the network utility.

Alternatively, we can model the association vector as a random

variable, x, and then the original problem can be regarded as

learning the optimal distribution of variable x. In statistics,

the probability of each possible value that a discrete random

variable, x, can take is described by the PDF, p(x).
In order to obtain the distribution of the near-optimal

association, a straightforward way is to use crude Monte-

Carlo simulation. First generate random samples and select

some samples which perform well. Assume the PDF of those

observed samples as q(x). Technically, q(x) can be regarded

as an observation from the true distribution. Then solving

the problem is equivalent to learning a PDF p(x) such that

the mismatch between the two distributions q(x) and p(x)
is minimized, i.e., p(x) can best describe the PDF of those

observed well-performing samples. The association vector x is

thus obtained from the learned p(x), which can yield maximal

network utility with high probability.

Fundamentally, CE is used as an effective measure quantita-

tively characterizing the difference between two distributions.

For discrete random variable x, it is defined as following:

D(q, p)=Eq

[

ln
q(x)

p(x)

]

=
∑

q(x) ln q(x)−
∑

q(x) ln p(x).

(4)
Thus, we can model the PDF learning reformulation of (3) as

a CE minimization problem which yields

min
p

∑

q(x) ln q(x)−
∑

q(x) ln p(x) (5)

under the same constraints of x in problem (3). Since the first

term
∑

q(x) ln q(x) is constant with respect to the desired

p(x), we have the equivalent maximization problem as

max
p

∑

q(x) ln p(x), s.t. (3b)− (3d). (6)

The CE approach is defined to search over the space of

all valid distribution functions to find the optimal distribution,

which is infeasible in practice. In machine learning, however, a

typical way is to restrict p(x) in one of the popularly used PDF

families, which reduces the search procedure from the entire

function space to a finite-dimensional variable space. The

choice of a probability distribution family in the CE approach

strongly depends on the nature of the design variables. For

optimization problems with discrete variables, such discrete

probability distribution families as Poisson, Bernoulli and

discrete uniform can be applied [11]. For binary association

variable x in our work, we adopt the Bernoulli distribution

which has the PDF given by p(x;u), where u is the parameter

vector denoting the success probability. Hence, optimization

problem (6) can be reformulated as:

max
u

∑

q(x) ln p(x; u), s.t. (3b)− (3d). (7)

To solve (7), we introduce an efficient stochastic sampling

method. Specifically, the algorithm first generates S random

samples, e.g., feasible association vectors x in our problem,

according to assumed probability distribution. For each sample

of {xs}Ss=1, it simply appears with probability 1/S, i.e.,

q(xs) = 1/S. Then we compute the objective value, e.g.,

the sum utility rate in our problem, of each sample and

select Selite best samples as “elites”. Therefore, the probability

distribution parameter is obtained based on the selected elites
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by minimizing the CE, which is evaluated as:

u
∗ = arg max

u

1

S

Selite
∑

s=1

ln p(x[s];u) (8)

where x
[s] is the association corresponding to the sth item in

the resorted sequence obtained from step 5 in Algorithm 1. By

following the procedure in each iteration, as inspired in [6], the

CE approach can produce a sequence of sampling distributions

that are increasingly concentrated around the optimal design.

B. The Proposed CE-based Association Algorithm

Applying the reformulation in (7) and the sampling algo-

rithm in (8), we propose the CE-based ASsociation (CEAS)

algorithm, which is summarized in Algorithm 1. Vectorize

the association variable as x=(x1, ..., xN )T, where N = IJ .

We set the probability parameter vector as u=(u1, ..., uN)T,

where un (0 ≤ un ≤ 1) denotes the probability of xn = 1.

Initially, we assume that all the elements of x belong to {0, 1}
with equal probability since no prior distribution information

is available. That is we initialize the probability parameter as

u
(0)= 1

2 × 1N×1, where 1 is the all-one vector.

During the tth iteration, we first generate S candidate asso-

ciation vectors {xs}Ss=1 by the stochastic sampling according

to the probability p(xs;u(t)). Note that we simply discard the

generated vector that not satisfying constraints (3b) and (3d).

Since each sample is a Bernoulli random variable following

x
s ∼ Ber(u(t)), the probability of xs is calculated as:

p(xs;u(t)) =

N
∏

n=1

(u(t)
n )x

s

n(1− u(t)
n )(1−xs

n
) (9)

which is used in step 3 of Algorithm 1. Then, in step 4, we

calculate the objective function {F (xs)}Ss=1, where F (xs) =
∑

i∈I

Ui(
∑

j∈J

xs
ijRij). Sort {F (xs)}Ss=1 in descending order and

the elites are obtained in step 6.

The next step is using elites to update u(t+1) by minimizing

CE, i.e., solving problem (8). By substituting (9) in (8), we

derive the first-order derivative of the object function in (8)

with respect to un as

1

S

Selite
∑

s=1

(

x
[s]
n

un

−
1− x

[s]
n

1− un

)

. (10)

Forcing (10) to zero, the optimal un is obtained as

u∗
n =

1

Selite

Selite
∑

s=1

x[s]
n . (11)

When updating the parameter vector, we use a smoothed

updating procedure, which is especially relevant for CE-based

approaches involving discrete random variables [12]. The

probability parameter is in practice updated by

u
(t+1) = αv(t) + (1− α)u(t) (12)

where v
(t) is the vector obtained via (11) and α is a factor

satisfying 0 ≤ α ≤ 1.

For simplification, we assume a single-antenna system

model. Joint optimization of association and beamforming

design for multiple-antenna system is in general much more

involved [4]. To extend the proposed algorithm to multi-

antenna scenarios, an alternating optimization mechanism can

Algorithm 1: The CE-based ASsociation (CEAS)

1 Initialize: t = 0; u(0) = 1
2 × 1N×1.

2 for t = 0 : T
3 Generate feasible {xs}Ss=1 based on p(xs;u(t));
4 Calculate the objective function {F (xs)}Ss=1;

5 Sort {F (xs)}Ss=1 in descending order as:

F (x[1]) ≥ F (x[2]) ≥ ... ≥ F (x[S]);

6 Select elites as x
[1], x[2], ..., x[Selite];

7 Update u
(t+1) according to (12);

8 t = t+ 1;

9 end for

10 Output: x[1] as the optimal association.

TABLE I
COMPLEXITY COMPARISON OF DIFFERENT ALGORITHMS

CEAS Dual-based [2] Exhaustive search

Complexity O(N) O(N) O(2N )

be adopted [4]. We can firstly conduct the association op-

timization in an equivalent SISO network by the proposed

CEAS algorithm. Beamforming optimization with given asso-

ciation can thus be conducted with existing methods.

C. Complexity Analysis

In Algorithm 1, the main complexity of CEAS obviously

comes from steps 4 and 7. In step 4, the objective function

of each candidate is calculated, which involves the complexity

order of O(S). In step 7, the probability parameter needs to be

updated according to (12) with the complexity O(N). There-

fore, the total complexity of CEAS amounts to O(T (S+N)).
Note that the choice for S depends on the size of the problem

and it is suggested to take S = cN , where c is a constant

[12]. Thus the complexity of CEAS amounts to O(N). Table

I lists the complexity of different algorithms. From Table I, we

conclude that the computational complexity of the proposed

CEAS algorithm is comparable to existing convex optimization

methods and significantly lower than the exhaustive search.

Besides, unlike convex optimization algorithms, CEAS is

nonsensitive to parameter choices and network deployment,

which is convenient to adjust adaptively in dynamic HetNets.

Note that the proposed CEAS algorithm runs without any

prior information and achieves nearly optimal performance

as illustrated in the next section. In practice, some prior

information, e.g., previous associations in the network, are

available, which can be utilized to accelerate convergence and

further reduce complexity.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed

CEAS algorithm via simulation. We compare CEAS algorithm

with the existing association methods, i.e., the Max-SINR

association and the convex optimization algorithm in [2] based

on Lagrangian dual decomposition. Consider a downlink 2-

tier HetNet with one MBS and three SBSs per cell. The

transmission powers of MBS and SBSs are {43, 23} dBm.
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Fig. 1. Average utility against iterations with varying S and Selite.

TABLE II
AVERAGE UTILITY AND RATE COMPARISON OF DIFFERENT ALGORITHMS

CEAS Max-SINR Dual-1 Dual-2 Dual-3

UEE 37.153 32.575 37.105 36.679 35.684

Rate (Mbps) 4.7632 5.0843 4.7394 4.6807 4.6535

Thirty users are uniformly distributed in a cell with radius

500 m. The system bandwidth is W = 10 MHz, and the path

loss is modelled as 128.1 + 37.6 log10 d(km).

Fig. 1 shows the average utility value against the number of

iterations under different values of S and Selite. From Fig. 1,

it is observed that increasing S appropriately is beneficial for

both accelerating the convergence and improving the objective

value. However, when S becomes sufficiently large, e.g.,

S = 500, such benefits disappear. In contrast, the impact of

Selite is quite different. When Selite is large, decreasing Selite

makes the algorithm converge quickly while still achieves

the same performance. However, if Selite is too small, the

convergence speed is accelerated at a cost of performance

degradation. Therefore, the values of S and Selite can be

adjusted for balancing the complexity and performance. In our

algorithm, we simply set S=500, Selite=10, and T =20.

For performance comparison, we test the association algo-

rithm in [2] with different parameters, which are referred to

as “Dual-1”, “Dual-2” and “Dual-3” in Fig. 2. Fig. 2 plots the

cumulative distribution function (CDF) of data rates. Table II

lists the average utility and rate obtained by these methods.

From Fig. 2 and Table II, we find that the performance of the

convex optimization algorithm in [2] obviously varies with the

parameter choices for the dual-based algorithm. In contrast,

our proposed CEAS algorithm is shown to outperform “Max-

SINR” association by 14% in terms of utility and achieves

the best utility among all comparison methods. Note that

although the “Max-SINR” achieves the highest average rate, it

results in extremely unfair user experience as evidenced. Fig.

3 compares the percentage of MBS/SBS users for different

association methods. “Near-optimal” denotes the algorithm in

[2] with proper parameters. It shows that the proposed CEAS

algorithm achieves better load balancing while the “Max-

SINR” association results in the overload of MBS.

V. CONCLUSION

In this letter, we considered the user association in HetNet

and formulated a utility maximization problem aiming to

achieve load balancing. We proposed an alternative associa-

tion algorithm by employing the idea of CE optimization in
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Fig. 2. CDF of data rates under different schemes.
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Fig. 3. The percentage of MBS/SBS users for different association methods.

machine learning, which is robust to network deployment and

algorithm parameter choices. Results demonstrated that our

proposed CEAS algorithm achieves near-optimal performance

efficiently. The user association problem with explicit individ-

ual user QoS constraints is a future research of interest.
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