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Abstract—Modulation recognition is a challenging task
while performing spectrum sensing in a cognitive radio
setup. Recently, the use of deep convolutional neural net-
works (CNNs) has shown to achieve state-of-the-art accu-
racy for modulation recognition [1]. However, a wireless
channel distorts the signal and CNNs are not explicitly
designed to undo these artifacts. To improve the perfor-
mance of CNN-based recognition schemes we propose a
signal distortion correction module (CM) and show that
this CM+CNN scheme achieves accuracy better than the
existing schemes. The proposed CM is also based on a
neural network that estimates the random carrier frequency
and phase offset introduced by the channel and feeds it
to a part that undoes this distortion right before CNN-
based modulation recognition. Its output is differentiable
with respect to its weights, which allows it to be trained
end-to-end with the modulation recognition CNN based on
the received signal. For supervision, only the modulation
scheme label is used and the knowledge of true frequency
or phase offset is not required.
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I. INTRODUCTION

With an increasing number of users in wireless net-
works there has been an increasingly high congestion in
the available spectrum making it a scarce asset. How-
ever, at times parts of the spectrum remain underuti-
lized [2]. This gives rise to the need for algorithms
that can dynamically share the available spectrum. In
the scenario of cognitive radio, spectrum sharing allows
cognitive radio users (secondary) to share the spectrum
bands of the licensed-band users (primary). A key aspect
of spectrum sharing is spectrum sensing [3]. Spectrum
sharing involves white space detection based on which
the secondary users (SU) communicate. Since the primary
users (PU) opportunistically allow the secondary users to
operate in an inactive frequency band originally allocated
to the PUs, minimum time delay is desired [4]. Recent
research efforts have been towards designing high-quality
spectrum-sensing devices and algorithms to characterize
the radio frequency (RF) environment, particularly for
recognition of the modulation scheme. Distortion of the
received signal due to channel fading effects makes the
modulation recognition a challenging task. Hence, an
algorithm that models and corrects the distortion caused
by the channel should improve modulation recognition.

In the past few years, deep learning techniques have
achieved state-of-the-art performance in pattern recog-
nition tasks [5]. For the purpose of spectrum sensing
different deep learning algorithms such as multilayer
perceptron (MLP) [6] and convolutional neural network

(CNN) [1] have been proposed to recognize the mod-
ulation scheme from the given signal. In this work we
introduce a module in a neural network to account for
the random carrier frequency offset (CFO) and phase
noise. Carrier frequency offset and phase noise are added
randomly to the transmitted signal by the channel and as
a result, the recognition accuracy reduces. For example, if
frequency deviation in the transmittor is 10 ppm above the
centre frequency and the same is for the receiver, a CFO
of 20 ppm is induced effectively in the received baseband
signal. If the carrier frequency is 4 GHz, the CFO is
up to ±80 kHz. Moreover, Doppler effect would further
degrade the frequency offset if either the transmitter or
reciever is moving. To tackle such problems, we propose
a correction module (CM) to undo the effect of random
frequency and phase noise without any prior information
about these factors. To be more precise, the correction
of CFO and phase noise is unsupervised. This idea
is inspired from spatial transformer networks used in
image recognition [7]. The CM when used with CNN
improves the recognition accuracy for both high and low
values of signal-to-noise ratio (SNR). We call this scheme
CM+CNN.

The rest of the paper is organized as follows: Section II
discusses the related work and dataset generation method.
In Section III we introduce our methodology. Section IV
discusses our results and conclusions are in Section V.

II. BACKGROUND AND RELATED WORK

Techniques for determining modulation scheme have
been depending on increasingly complex machine learn-
ing methods. Early work by Nandi [6] implemented a
decision theoretic and MLP approach for modulation
recognition. A hierarchical modulation recognition sys-
tem was introduced in [8] which shows that with in-
creased path fading, the classification accuracy degrades.
Some other efforts have utilized machine learning tech-
niques such as support vector machines (SVM) [9]. Other
techniques include feature engineering methods obtained
using cyclostationarity [10] and wavelet transform [11].
Extracting a proper set of features for classification also
has many practical issues. For example, without prior
knowledge, the instantaneous phase or frequency cannot
be estimated. Work in [12] utilizes different variants of
CNN architectures to improve the modulation recognition
accuracy. A detailed survey on the methods for modula-
tion recognition is presented in [1]. For fair comparison,
we evaluate our scheme on the same dataset that has been
used in the prior work [1]. Correction of channel artifacts
in the signal was not considered in prior works due to
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Fig. 1: Data Generation Scheme [13].

Parameter Value
Sampling frequency 200 kHz
Sampling rate offset standard deviation 0.01 Hz
Maximum sampling rate offset 50 Hz
Carrier frequency offset standard deviation 0.01 Hz
Maximum carrier frequency offset 500 Hz
Number of sinusoids used in frequency selective fading 8
Maximum doppler frequency used in fading 1
Fading model Rician
Rician K-factor 4
Delays [0.0, 0.9, 1.7]
Magnitudes corresponding to each delay time [1, 0.8, 0.3]
Ntaps 8

Standard deviation of the AWGN process 10−
SNR
10

TABLE I: Channel Model Parameters [13]

which even for SNRs greater than 0dB the accuracy
reported was poor. The proposed CM+CNN framework
addresses this issue by using a learnable correction mod-
ule in tandem with a CNN, leading to a higher accuracy.

For the purpose of developing machine learning models
for radio recently an open source, synthetically generated
dataset (RadioML2016.10a) using GNUradio was intro-
duced [13]. Fig.1 illustrates the dataset generation tech-
nique. The channel incorporates a sampling frequency
offset, carrier frequency offset and a phase noise using
a random walk process. Additive white gaussian noise
(AWGN) further degrades the signal. Parameters used
to model the channel are listed in Table I. The model
for signal generation is a complex enough replication of
real radio transmission signals making it a quality dataset
for developing algorithms and performing simulations for
software based radio.

III. PROPOSED TECHNIQUE

As described in Section I, addition of CFO and phase
noise to the signal hampers modulation recognition. In
this section we introduce a correction module (CM) to
address this issue as depicted in Fig. 2. Overall the CM
can be divided into two parts. The first part is a trainable
function that estimates the phase and frequency offsets
(correction parameters) from the received signal. The
second part is a static function that generates the input
for CNN by undoing the frequency and phase distortion
on the received signal using the offsets estimated by the
first part. The first part is trained by backpropagating the
error from the modulation recognition label through the
CNN and through the second part. Thus, no additional
supervised information is needed such as true phase or
frequency offset.

A. Correction parameter estimation
For the first part of the CM, we utilize a fully connected

network (FCN) to estimate CFO ω and phase offset φ.
The FCN has one hidden layer (in which 80 hidden
neurons gave good validation performance) followed by
a final layer with two outputs ω and φ. To allow the
estimation of these two parameters from a continuous
and unbounded range assuming no prior knowledge, we

choose the activation function of the final layer to be
linear. Since the signal is distorted randomly, the error
in the estimation of the correction parameters may vary
with SNR and modulation scheme. Therefore we also
experimented with the idea of simultaneously giving
multiple versions of the signal to the CNN along with the
original (uncorrected) signal as well. Assuming that there
are K+1 pairs of correction parameters (ωk, φk) indexed
by k, such that k = 0 was reserved for the received signal
without any estimated correction (i.e. (ω0, φ0) = (0, 0),
and rest of the K signals were generated using the 2K
output neurons of the FCN.

B. Generating input for CNN
The second part of the module applies the phase and

frequency inverse transformations using the estimated
correction factors by multiplying the received signal xn
with e−jωkn−jφk , where n is the discrete time index
of the signal. That is, the second part implemented the
following equations:

Y
(I)
k,n = <

(
xne

−jωkn−φk
)

(1)

Y
(Q)
k,n = =

(
xne

−jωkn−φk
)

(2)

In practice, we obtained best results with K = 1 as shown
in Fig. 2. That is, k = 0 corresponded to the original
signal, while we needed to estimate only one frequency-
phase pair for k = 1 using the FCN part requiring it to
have only two output neurons. Thus, the dimension of
the output of this part was 128 × 2(K + 1), where the
dataset had 128 samples for each signal, and the factor 2
accounts for both real and imaginary parts of the signal.
Thus, the output of the CM was sized 128× 4.

C. End-to-end training and CNN architectures
The output of the CM, which was K+1 versions of the

received signal, was input into the CNN that estimated
the modulation scheme. To train CM+CNN, i.e. the pa-
rameters of the FCN and the CNN, the recognition error
was backpropagated through the cascade of CNN, inverse
transformation, and FCN. This was possible because the
sub-gradient of outputs of the FCN and the CNN with
respect to their respective inputs and parameters (weights
and biases) exists everywhere by design. Additionally,
a quick look at (1), (2) is sufficient to realize that the
gradient of the outputs of the inverse transformation
with respect to its inputs xn, ωk, and φk also exists.
This allowed end-to-end backpropagation using only the
knowledge of the modulation scheme for the training data
without additional knowledge of the actual frequency or
phase offsets thus learning it unsupervised.

To improve the modulation recognition accuracy, we
trained two different CNNs, one each for SNR below
and above 0 dB. Based on prior studies we assume that
whether the SNR is above or below 0dB can be deter-
mined, even without the knowledge of the modulation
scheme [14],[15]. We confirmed that architectures similar
to the ones described previously in [1] worked well,
which is satisfying as it also allows direct assessment of
adding the proposed correction module (CM). We used a
four-layer CNN for non-negative SNR and a three-layer
CNN for negative SNR based on a validation process. All
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Fig. 2: Correction module and network architecture.

Fig. 3: Accuracy comparison between proposed technique
(CM+CNN) and previous benchmark (CNN, CLDNN)

convolutional layers of our CNNs (whether three or four)
had 50 one-dimensional convolutional filters of size cl×8,
where cl is the number of feature maps or channels of
the previous layer. We used 4 input channels as described
in III-B for the input layer, unlike the 2 channels of [1].
The convolution was performed using valid setting and
thus no padding was required at signal edges. The first
two convolutional were each followed by max-pooling
of factor 2. The output of the convolutional layers is
followed by a dense layer having 512 neurons. The output
layer had 11 neurons. All layers used rectified linear
activation, except the output layer that used softmax.

IV. RESULTS AND DISCUSSION

Among various experiments we conducted to deter-
mine the useful combinations of neural network archi-
tectures and hyperparameters, including the number of
estimated correction parameters, we describe those that
led to conclusive results. The RadioML2016.10a dataset
that we used has signals with 11 analog and digital modu-
lation schemes with SNR varying from −20dB to +18dB.
Since every signal passes through the channel described
in Table I, it gets distorted by sampling rate offset, carrier
frequency offset, phase noise and AWGN. The correction
module in our work accounts for phase and frequency
offset. We also verified the previous benchmark results by
reimplementing CNN and CLDNN [1]. The architecture
used for CNN has 3 convolutional layers each having 50
filters with 1 × 8 filter size. For CLDNN the output of
3 convolutional layers is concatenated with the output of
the first convolutional layer. Comparison of modulation
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Fig. 4: Accuracy gain with respect to the base CNN for
frequency correction, phase correction, both frequency and
phase corrections

Fig. 5: Normalized histogram for frequency corrections

recognition accuracy between the proposed method, CNN
and CLDNN for different SNRs is shown in Fig. 3. For
SNRs above -14dB a higher accuracy is observed using
the proposed technique with significant improvements for
SNR greater than 0dB. Similar performance improvement
is observed for SNR less than -14dB.

We also experimented with the following three cases of
parameter corrections: 1) frequency only, 2) phase only,
and 3) frequency and phase corrections. Accuracy gains
with respect to the base CNN for the three cases are
presented in Fig. 4. We observed significant gains for
nearly all the cases, thus demonstrating the benefit of
frequency and phase offset corrections.

Fig. 5 shows the output of the correction module. Note
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that the activation function of the final fully connected
layer of the FCN was linear as described in Section
III-A. The output could have been any real value. But
we observe in Fig. 5 most of the frequency corrections
lie in the range of −0.01 Hz to +0.01 Hz. The standard
deviation of the frequency corrections obtained is 0.01131
Hz. This matches with the standard deviation of carrier
frequency offset that is used to model the channel as
listed in Table I. Hence the correction module estimates
the CFO closely with the actual offset values without
any extra supervised data. Due to complex selective
channel fading and delays, it is difficult to estimate the
actual range of random phase noise. In our experiments
we found the phase noise correction to vary between
150◦ and 270◦ with mode at 240◦. Further we plot the
confusion matrix for non-negative and negative SNRs in
Fig. 6. For non-negative SNRs we observe that the major
confusion is between QAM16 and QAM64. A reason
for this can be that features for a signal with QAM64
modulation may not be captured by just 128 samples
due to which the deep network confuses it with QAM16.
Due to increased noise we observed confusion to have
increased for negative SNR signals. All the techniques
do no better than a random guess for signals having SNR
lower than −14 dB as shown in Fig. 3.

V. CONCLUSION

We introduced a new module in this paper to esti-
mate the carrier frequency offset and phase noise of
the received signal to improve modulation recognition
accuracy. The proposed network outperforms the previous
benchmark achieving significant accuracy improvements
for both high and low SNR signals. Since a generic CNN
is not designed to deal with the effects caused by wire-
less channels, we addressed this issue by introducing a
correction module. Further we observe that the frequency
corrections calculated corresponds closely with the actual
frequency offsets caused by the channel. Since there can
be any number of perceptrons (correction factors) in the
final layer, corrections other than phase or frequency can
also be estimated. We have demonstrated that the concept
of spatial transformer networks [7] can be generalized to
distortion correction for signals in a cognitive radio setup.
Similarly, distortion parameters for audio and speech
signals can also be estimated for signal correction before
a recognition task in a similarly cascaded neural network
that can be trained end-to-end.
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