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Approximation of Meta Distribution and Its
Moments for Poisson Cellular Networks

Sudarshan Guruacharya and Ekram Hossain

Abstract—The notion of meta distribution as the distribution
of the conditional coverage probability (CCP) was introduced
in [1]. In this letter, we show how we can reconstruct the entire
meta distribution only from its moments using Fourier-Jacobi ex-
pansion. As an example, we specifically consider Poisson cellular
networks. We also provide a simple closed-form approximation
for its moments, along with its error analysis. Lastly, we apply
the approximation to obtain a power scaling law for downlink
Poisson cellular networks.

Index Terms—SINR, meta distribution, conditional coverage
probability, Fourier-Jacobi expansion, power scaling law

I. INTRODUCTION

In [1], [2], the notion of meta distribution was defined for
signal-to-interference ratio (SIR) coverage probability. Meta
distribution essentially separates the randomness due to small-
scale fading and the locations of interferers. We can trivially
extend this definition to the case of signal-to-interference-plus-
noise (SINR) coverage probability, which we will exclusively
consider here.

Let Φ be a point process, and let us assign to each user
the conditional probability of coverage as P(SINR(Φ) >
θ|Φ) ≡ E[1(SINR(Φ) > θ)|Φ] averaged over fading for a
given instantiation of the point process. Let us denote the
conditional coverage probability (CCP), which is a random
variable in itself, by

C(θ) , P(SINR(Φ) > θ|Φ). (1)

The meta distribution refers to the distribution of C [1], [2]

F̄ (θ, x) = F̄C(θ)(x) , P!0(C(θ) > x), (2)

where x ∈ [0, 1] (referred to as the reliability). We have
F̄ (0, x) = 1 and limθ→∞ F̄ (θ, x) = 0. Also, F̄ (θ, 0) = 1, and
F̄ (θ, 1) = 0. The F̄ (θ, x) is the fraction of users that achieve
an SINR of θ with probability at least x in each realization of
Φ. The user under consideration is assumed to be located at
0 (the origin). The mean (or standard) coverage probability is

E!0
Φ [C(θ)] = P!0(SINR > θ) =

∫ 1

0

F̄ (θ, x)dx. (3)

The n-th moment of C is the spatial average µn(θ) = E!0
Φ [Cn].

Unfortunately, the meta distribution of C is difficult to obtain
in a closed analytical form. In this letter, we present a general
methodology on how we can reconstruct the meta distribution
from its moments using Fourier-Jacobi expansion. We examine
the case of Poisson cellular network in particular, and also
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study a simple closed-form approximation of its moments. The
truncated Fourier-Jacobi expansion provides a better accuracy
over the simple beta approximation, as used in [1], [2], and its
generality allows it to be used in other types of networks such
as the D2D-enabled cellular and uplink cellular networks [3] as
well. Likewise, the closed-form approximation of the moments
allows us to make qualitative analysis of the system and rough
quantitative estimates. As an example, we obtain a simple
power scaling law for downlink Poisson cellular networks.

II. POISSON CELLULAR NETWORK

Consider base stations (BSs) scattered over a two dimen-
sional plane according to the homogeneous Poisson point
process (PPP) denoted by Φ with intensity λ. Let the user
under consideration, which is assumed to be at the origin,
connect to the nearest BS, located r0 distance away. The path-
loss is assumed to be given by the power law r−γ0 , where
γ > 2 is the path-loss exponent. The SINR experienced by the
typical user is SINR =

g0r
−γ
0 p

I+σ2 , where I =
∑
i∈Φ\{0} gir

−γ
i p

is the aggregate interference from other BSs located ri distance
away and transmitting over the same spectrum. Here, p is
the transmit power of the BSs, σ2 is the noise power, and
gi ∼ Exp(1) are independent and identically distributed (IID)
Rayleigh fading gains.

Given the SINR threshold θ, the CCP in (1) becomes

C = P

(
g0r
−γ
0 p

I + σ2
> θ

∣∣∣∣Φ
)

= Egi
[
P
(
g0 >

θrγ0
p

(σ2 + I)

∣∣∣∣gi,Φ)] ,
(a)
= exp

(
−θσ

2rγ0
p

)
Egi

exp

−θ ∑
i∈Φ\{0}

gi

(
r0

ri

)γ ,
(b)
= exp

(
−θσ

2rγ0
p

) ∏
i∈Φ\{0}

[
1 + θ

(
r0

ri

)γ]−1

, (4)

where (a) is due to g0 ∼ Exp(1), and (b) is the Laplace
transform of the sum of IID exponential random variables.

To find the n-th moments of C, we take the spatial average
µn = E!0

Φ [Cn]. From (4), conditioning on r0 and following the
procedure given in [1, Theo. 2], we have

µn = Er0
[
e−

nθσ2

p rγ0 e−πλρnr
2
0

]
,

where ρn = 2
∫ 1

0
(1 − v(y))y−3dy and v(y) = (1 + θyγ)−n.

For PPP, the density of the distance to the nearest BS is given
by fr0(r) = 2πrλe−πλr

2

. Hence,

µn = 2πλ

∫ ∞
0

e−
nθσ2

p rγe−πλρnr
2

e−πλr
2

rdr.
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Changing the variable to z = r2, we have the final form of
the integral as

µn = πλ

∫ ∞
0

exp{−(Anz +Bnz
γ/2)}dz, (5)

where An = πλ(ρn + 1) and Bn = nθσ2

p . From [1, Theo. 2],
we also have 1 + ρn = 2F1(n,−2/γ; 1− 2/γ;−θ).

III. RECONSTRUCTING THE META DISTRIBUTION BY
FOURIER-JACOBI EXPANSION

Since meta-distribution has a finite support of [0, 1], the
problem of reconstructing the distribution from its moments
fits into the Hausdorff moment problem and can be done
using the Jacobi polynomials [7] [8, Ch. 18]. Since canonically
the Jacobi polynomials, P ∗(α,β)

n , are defined over [−1, 1], we
will instead be working with shifted Jacobi polynomials. The
shifted Jacobi polynomial, P (α,β)

n , is then defined over [0, 1]
with respect to the weight function w(x) = (1 − x)αxβ ,
where α, β > −1. The two polynomials are related by the
identity P

(α,β)
n (x) = P

∗(α,β)
n (2x − 1) for x ∈ [0, 1]. Facts

about P ∗(α,β)
n can thus be converted into facts about P (α,β)

n

by change of variable.
A number of orthogonal polynomials occur as special cases

of the Jacobi polynomial. When α = β = 0, the Jacobi
polynomial reduces to Legendre polynomial; when α = β =
±1/2, it reduces to Chebyshev polynomial; when α = β, it
reduces to Gegenbaur polynomial. These polynomials satisfy
the orthogonality condition∫ 1

0

P (α,β)
n (x)P (α,β)

m (x)w(x)dx = hnδmn, (6)

where δmn is Kronecker delta function and hn is the normal-
ization constant given by (see [8, Ch 18.3] for canonical)

hn =
1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

n!Γ(n+ α+ β + 1)
.

As a check, when n = 0, we have

h0 =
1

α+ β + 1

Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 1)
=

Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 2)
,

which is the normalization constant for beta distrbution
Beta(β + 1, α + 1). Also, when α = β = 0, we have
hn = 1

2n+1 , which matches with the normalization constant
for shifted Legendre polynomial.

The explicit expression for the shifted Jacobi polynomial is
given by (see [8, Eqn 18.5.8] for canonical)

P (α,β)
n (x) =

n∑
`=0

(
n+ α

`

)(
n+ β

n− `

)
x`(x− 1)n−`. (7)

In particular, P (α,β)
0 (x) = 1.

Given all the moments of the meta distribution µn =∫ 1

0
xnfC(x)dx, we can reconstruct the PDF of the meta

distribution defined over the interval [0, 1] using the shifted
Jacobi polynomials via Fourier-Jacobi expansion as:

fC(x) = w(x)

∞∑
n=0

anP
(α,β)
n (x). (8)

As with the usual Fourier expansion, we can extract the
coefficients an by multiplying both sides by P

(α,β)
n (x), in-

tegrating with respect to x, and applying the orthogonality
condition (6). Using (7), this gives us

an =
1

hn

∫ 1

0

fC(x)P (α,β)
n (x)dx,

=
1

hn

n∑
`=0

(
n+ α

`

)(
n+ β

n− `

)
µ̂n`, (9)

where µ̂n` =
∫ 1

0
x`(x − 1)n−`fC(x)dx are the modified

moments. The modified moments µ̂n` are related to the usual
moments µn by the binomial expansion

µ̂n` =

∫ 1

0

x`
n−∑̀
k=0

(
n− `
k

)
(−1)kxn−`−kfC(x)dx,

=

n−∑̀
k=0

(
n− `
k

)
(−1)k

∫ 1

0

xn−kfC(x)dx,

=

n−∑̀
k=0

(
n− `
k

)
(−1)kµn−k. (10)

In particular, µ̂00 = 1 and a0 = 1/h0. Hence, we have
completely reconstructed the PDF of meta distribution from
its moments using shifted Jacobi polynomials. The first term
in the series (8) is indeed given by the beta distribution.

We can also integrate the PDF to obtain the CDF, which is
more useful in practical applications. We have

FC(x) =

∫ x

0

fC(x)dx =

∞∑
n=0

an

∫ x

0

w(x)P (α,β)
n (x)dx.

The shifted Jacobi polynomials can also be generated by
the Rodrigues’ formula

P (α,β)
n (x) =

(−1)n

n!

1

(1− x)αxβ
dn

dxn
[
(1− x)α+nxβ+n

]
.

(11)
Using the Rodrigues’ formula (11), it can be shown that the
integral for n ≥ 1 is∫ x

0

(1−x)αxβP (α,β)
n (x)dx = − 1

n
(1−x)α+1xβ+1P

(α+1,β+1)
n−1 (x).

Therefore, the required expansion for the CDF is

FC(x) =
1

h0

∫ x

0

(1− x)αxβdx

−
∞∑
n=1

an
n

(1− x)α+1xβ+1P
(α+1,β+1)
n−1 (x). (12)

While any value of α and β can be considered, so long
as they are greater than −1, it is prudent to take their values
such that the first two correction terms vanishes by setting
a1 = a2 = 0. The values of α and β thus obtained corresponds
to the values obtained by moment matching method for the
beta distribution:

α+ 1 =
(µ1 − µ2)(1− µ1)

µ2 − µ2
1

, β + 1 =
(α+ 1)µ1

1− µ1
.
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Thus, we have simultaneously justified the use of moment
matching method, while at the same improving on it.

The series (8) will in general not converge without imposing
some side condition on an. The convergence of series can
be investigated using Weierstrass M-test. Without losing any
generality, let −1 < β ≤ α such that α ≥ −1/2. Then, from
[8, Eqn 18.14.1], we have |P (α,β)

n (x)| ≤ P (α,β)
n (1) = (α+1)n

n! ,
where (.)n is the rising factorial. Here, (α+1)n

n! =
∏n
k=1(1 +

α
k ). When α ≤ 0, we have

∏n
k=1(1 + α

k ) ≤ (1 + α
n )n ≤ eα.

Similarly, when α > 0, we have
∏n
k=1(1 + α

k ) ≤ (1 + α)n ≤
eαn. We can now upper bound each term of the series as

|anP (α,β)
n (x)| ≤

{
|an|eα for α ≤ 0,
|an|eαn for α > 0.

The series will converge absolutely and uniformly: if
∑
n |an|

converges for α ≤ 0; or if we can express |an| as |an| =
bne
−ᾱn where ᾱ ≥ α and bn ≥ 0 such that

∑
n bn converges

for α > 0.

IV. APPROXIMATE MOMENTS OF C AND ERROR ANALYSIS

A. Approximate Moments of C
The integral (5) does not have a closed-form solution.

Nevertheless, a simple closed-form approximation can be
given as [4, Eqn 4]

µn ' πλ

[
An +

γB
2/γ
n

2Γ( 2
γ )

]−1

. (13)

One importance of this formula lies in the fact that we can
explicitly solve for the transmit power p given the coverage
constraint

P!0(C > x) ≥ 1− ε, (14)

where ε ∈ (0, 1) is some arbitrary value which represents the
quality-of-service. Since |C| ≤ 1, we have the special case of
lower Markov bound as [5, Sec. 6.2.a] P!0(C ≥ x) ≥ µ2−x2,
where µ2 ≥ x2. The constraint (14) is always satisfied if µ2−
x2 ≥ 1 − ε. Using (13) for µ2 and after some basic algebra,
the minimum p is

p ' cλ−γ/2, (15)

where c =
[

2π(1−(1−ε+x2)(1+ρ2))
γ(1−ε+x2)(2θσ2)2/γ

Γ
(

2
γ

)]−γ/2
. This gives

a simple power scaling law based on the meta-distribution.
Similar scaling laws were obtained in [6] using the first
moment. In the following, we will conduct the error analysis
of the above approximation.

B. Error Analysis

In [4], we had the following: For any positive constants
A > 0, B > 0 and γ > 2, let

I =

∫ ∞
0

exp{−(Az +Bzγ/2)}dz (16)

and Î =
1

K
, where K = A+

γB2/γ

2Γ( 2
γ )
, (17)

then we have the integral approximation I ' Î .

The approximation is exact when A = 0 or B = 0 or γ = 2.
However, the error of this approximation was not analyzed in
[4]. To do so, first observe that we can equivalently express Î
in an integral form as

Î =
1

K
=

∫ ∞
0

e−Kzdz.

Now, let h(z) = Az +Bzγ/2 and g(z) = Kz, so that their
difference is f(z) = h(z)− g(z) = (A−K)z+Bzγ/2. Thus,
our required integral can be expressed as

I =

∫ ∞
0

e−h(z)dz =

∫ ∞
0

e−f(z)e−g(z)dz.

Integrating by parts, we have

I = e−f(z)

∫
e−g(z)dz

∣∣∣∣∞
0

−
∫ ∞

0

f ′(z)e−f(z)

[∫
e−g(z)dz

]
dz

= −e−f(z) e
−Kz

K

∣∣∣∣∞
0

+
1

K

∫ ∞
0

f ′(z)e−f(z)e−Kzdz.

Now, regardless of whether A−K is positive or negative,
f(∞) =∞ because γ > 2. Since e−f(∞) = 0 and ef(0) = 1,
the integral reduces to

I =
1

K
+

1

K

∫ ∞
0

f ′(z)e−f(z)e−Kzdz

Recalling that Î = 1/K, the approximation error is now

|I − Î| = 1

K

∣∣∣∣∫ ∞
0

f ′(z)e−f(z)e−Kzdz

∣∣∣∣ ,
≤ 1

K

∫ ∞
0

∣∣∣f ′(z)e−f(z)e−Kz
∣∣∣dz. (18)

If the maximum value attained by e−f(z) is denoted by
M = maxz≥0 e

−f(z) <∞, then we have further inequality

|I − Î| ≤ M

K

∫ ∞
0

∣∣f ′(z)e−Kz∣∣dz
(a)

≤ M

K

∫ ∞
0

[
|A−K|+ γ

2
Bzγ/2−1

]
e−Kzdz,

(b)
=
M

K

[
|A−K|
K

+
γB

2

Γ(γ/2)

Kγ/2

]
,

(c)
=
γM

2K

[
1

Γ(2/γ)

B2/γ

K
+ Γ

(γ
2

)(B2/γ

K

)γ/2]
,

(19)

where (a) follows from triangle inequality, (b) follows by term
wise integration, and (c) follows from the definition of K in
(17). Equation (19) gives us our required error bound.

As the final piece of analysis, we need to evaluate the
maximum M , which we assumed to be finite. We will now
show that M is indeed finite and independent of A and B.
First, observe that

f(z) = (A−K)z +Bzγ/2 = − B2/γ

2
γΓ( 2

γ )
z +Bzγ/2,

f ′(z) = − B2/γ

2
γΓ( 2

γ )
+
γ

2
Bzγ/2−1,

f ′′(z) =
γ

2

(γ
2
− 1
)
Bzγ/2−2.
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Fig. 1. Relative error versus reliability for γ = 5.

Since B > 0 and γ > 2, we have f ′′(z) ≥ 0 for all z ≥ 0.
Hence, f(z) is a convex function over z ≥ 0, with a unique
minima at

z∗ = 1
/ [

Γ
2
γ−2

(
2

γ

)
B2/γ

]
.

obtained by solving f ′(z) = 0. Thus, the minimum value
attained by f(z) is, after some simplification,

min
z

f(z) =
(

1− γ

2

)/
Γ

γ
γ−2

(
2

γ

)
,

which is independent of A and B. Therefore, the required
expression for M is M = maxz e

−f(z) = e−minz f(z) =

exp{
(
1− γ

2

) /
Γ

γ
γ−2

(
2
γ

)
}.

In the above error expression (19), as A → ∞ while B
is fixed, K → ∞ as well. Thus, |I − Î| → 0. Likewise, as
B →∞ while A is fixed, we have B2/γ/K → (2/γ)Γ(2/γ)
because γ/2 > 1. Also, since K → ∞ as B → ∞, we thus
have |I − Î| → 0. To conclude, |I − Î| → 0 either (i) when
A → 0 or A → ∞ and B is fixed, or (ii) when B → 0 or
B →∞ and A is fixed.

Likewise, from (18) we also have∣∣∣∣IÎ − 1

∣∣∣∣ =

∣∣∣∣∫ ∞
0

f ′(z)e−f(z)e−Kzdz

∣∣∣∣ .
Similar argument as before can be used to show that I/Î →

1 when A goes to infinity. However, when B goes to infinity,
the error is bounded by O(1).

V. NUMERICAL RESULTS

We consider the following parameters: λ = 0.001 per m2,
γ = 5, θ = 0 dB, p = 0 dBm, σ2 = −100 dBm. Points are
uniform randomly dropped over an area of π×5002 m2, with
the typical user located at the origin. For every realization of
the point process, 700 random channel realizations are used to
find the conditional coverage probability of the typical user.
Likewise, 5,000 geometric configurations are used to construct
the meta distribution.
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Fig. 2. Mean and variance and their approximations for γ = 3.

In Fig. 1, we plot the relative error between the beta
distribution and Fourier-Jacobi expansion. The α and β are
assigned according to the moment matching method while
the Fourier-Jacobi expansion is truncated after ten terms. We
observe that Fourier-Jacobi expansion gives more accurate
result, and the relative error is under 1% for the most part.

In Fig. 2, we plot the mean and variance of meta distribution
and their approximation for γ = 3. As a comparison, the
mean for the noiseless system is also given. We see that the
approximation has highest error around the knee of the curve.

VI. CONCLUSION

We have shown how we can reconstruct the meta distribu-
tion given all of its moments via Fourier-Jacobi expansion.
We have also analyzed the error characteristics of a simple
approximation for its moments for a Poisson cellular network.
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