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Abstract— This work aims to handle the joint transmitter
and noncoherent receiver optimization for multiuser single-input
multiple-output (MU-SIMO) communications through unsuper-
vised deep learning. It is shown that MU-SIMO can be modeled
as a deep neural network with three essential layers, which
include a partially-connected linear layer for joint multiuser
waveform design at the transmitter side, and two nonlinear layers
for the noncoherent signal detection. The proposed approach
demonstrates remarkable MU-SIMO noncoherent communica-
tion performance in Rayleigh fading channels.

Index Terms—Unsupervised deep learning, joint transmitter
and receiver design, noncoherent detection, multiuser single-input
and multiple-output (MU-SIMO).

I. INTRODUCTION

The use of neural networks for communicational signal
processing can be traced back to 1990s, when the research
was mainly focused on the autonomic modulation recognition,
demodulation, and channel decoding (e.g. [1], [2]). With the
recent success of deep learning in wide areas of applications
(including natural language processing, image processing,
autonomous driving, financial investment, computer games,
and many others), neural networks have regained increasing
interests in the domain of communicational signal processing
(e.g. [3]–[5]). Their basic principle lies in the use of deep
neural network (DNN) for more detailed waveform classifica-
tion. Remarkably, an unsupervised deep learning approach has
recently been proposed for joint transmitter and receiver (T-R)
optimization, where the communication chain is modeled as
an autoencoder combined with a parametric transform network
(PTN) [6]. Through unsupervised offline learning given a
specific fading channel model, the autoencoder-PTN approach
is able to suggest a suitable transmitter and receiver structure
for noncoherent communications.

This work is motivated by the fact that the current
autoencoder-PTN structure involves considerable number of
hidden layers, which could introduce unnecessary complexity
and processing latency for both the learning and commu-
nication procedures. Moreover, a layer-reduced DNN might
get the front layer better optimized due to its advantage of
handling the vanishing (or exploding) gradients problem in
the DNN training procedure [7], [8]. After a fundamental
rethinking of the joint T-R design from the communication
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theoretic aspect, we show that the communication chain can
be represented by a DNN with three essential layers. With
specific to multiuser single-input multiple-output (MU-SIMO)
noncoherent communications, the first layer is a partially-
connected linear layer responsible for multiuser waveform
joint optimization, and the others are nonlinear dense layers for
noncoherent multiuser detection at the receiver side. Computer
simulations show that the proposed deep-learning approach
offers remarkable non-coherent communication performance
in Rayleigh-fading channels due to the transmitter-receiver
joint optimization gain. We also applied the proposed approach
onto single-input single-output (SISO) system; as a special
case of MU-SIMO. The proposed approach outperforms the
autoencoder-PTN approach while offers much lower compu-
tational complexity.

II. SYSTEMS MODEL AND PROBLEM STATEMENT

Consider MU-SIMO communications, where a set of user
terminals talk to an access point with N receive antennas.
Each user terminal employs a single transmit-antenna to send a
temporal sequence cm , [c0,m, ..., cL−1,m]T , where m stands
for the user index, L for the sequence length, and [·]T for
the matrix/vector transpose. Considering there are M(≤ N)
users involved in the communication, the received signal at
the access point is described by the following matrix form

yl = Hxl + vl, 0≤l≤L−1 (1)

where xl , [cl,0, ..., cl,M−1]T , H is the (N) × (M) random
channel matrix, and vl is the white Gaussian noise with zero
mean and the variance σ2

v .
Suppose: A1) the receiver does not know the channel matrix

H, and A2) elements in cm can be mutually correlated with
respect to l. The receiver aims to reconstruct the sequences
cm, ∀m, from yl, ∀l, through noncoherent sequence detection.
To facilitate our discussion, we represent the linear model (1)
into a more compact form as below

Y = XHT + V (2)

where X is a (L)× (M) matrix with the mth column formed
by cm, Y is a (L) × (N) matrix with the lth row formed
by yT

l , and V the noise matrix corresponding to v. Then,
the noncoherent receiver forms the following mathematical
relationship

X̂ = G(Y), (3)

where G(·) denotes the function for signal detection.
Due to the channel randomness and the assumption A1), X

might not be uniquely determined by Y even in the noiseless
case. Such is called channel ambiguity which is the dominating
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factor that limits the noncoherent detection performance. This
is the problem we aim to handle through the deep-learning
assisted joint T-R design.

III. DEEP LEARNING FOR JOINT T-R OPTIMIZATION

A. Minimization of Channel Ambiguity

We start from the maximum a posteriori (MAP) receiver of
(3) which maximizes the probability of X conditioned on Y

X̂ = arg max
X∈A

p(X|Y) (4)

subject to X drawn from a finite-alphabet set A =
{Θ0, ...,ΘJ−1}, where Θj is a (L) × (M) matrix, and J
the size of A. The mth column of Θj is the mth user’s
codeword cm, which is independently drawn from their user-
specific codebooks Cm. Assuming each codebook having K
codewords, we have: J = KM . In (4), p(·) denotes the
probability.

The goal of joint T-R design is to find a set A? (or
equivalently C?

m,∀m) that minimizes the error probability
p(X̂ 6= X). From the information-theoretic point of view, A?

is a set of joint typical sequences. As long as A? is determined,
every user terminal will utilize their user-specific codebook
C?

m for communications, and there is no need of cooperation
between users.

Definition 1: The objective function in (4) can be viewed
as a waveform classification problem as illustrated in Fig.
1 (a). Given J bins labeled with Θ0, ...,ΘJ−1, the role of
receiver (classifier) is to throw Y into their corresponding bins
according to the a posteriori probability. Consider a received
waveform Y = ΘjH

T + V, 0≤j≤J−1, the waveform is
called miss-classified if we have X̂ 6= Θj . The probability
of missed classification (PMC) can be directly translated into
the communication error probability.

There are two factors that can cause the waveform missed
classification. One is the white Gaussian noise V, and the
other is the channel ambiguity as already briefly discussed in
Section II. While the noise issue has been well addressed in
the literature (e.g. [6]), our focus is on the channel ambiguity
which should be minimized using deep learning for the joint
T-R design.

Proposition 1 (channel ambiguity): Given the waveform
set A with Θj ∈ A to be equally probable, the probability of
waveform missed classification in the noise-free (NF) case is

PMCNF = E
Hj

(∑
k 6=j p(Θ

−1
k ΘjH

T
j )∑J−1

k=0 p(Θ
−1
k ΘjHT

j )

)
(5)

where E(·) denotes the expectation, and Hj , Θ−1j Y in the
noise-free case.

The term PMCNF in (5) is due to the channel ambiguity and
thus noise independent. It can cause communication error floor
at higher signal-to-noise ratios (SNRs) if we have Θk,Θj ∈ A
inappropriately designed. Hence, it must be minimized with
the following objective function

min
A

PMCNF = min
A

(1− Γ(Hj ,Θk,Θj)) (6)
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Fig. 1. The proposed DNN structure for joint transmitter and noncoherent
receiver design.

with

Γ(Hj ,Θk,Θj) , E

(
p(Hj)∑J−1

k=0 p(Θ
−1
k ΘjHT

j )

)
, Θk,Θj ∈ A

(7)
Since 0 < Γ(Hj ,Θk,Θj) ≤ 1, the optimization problem can
be stated by

Proposition 2: The channel-ambiguity minimization prob-
lem (6) is equivalent to

max
A

Γ(Hj ,Θk,Θj), Θk,Θj ∈ A (8)

where Hj is a random channel matrix following a certain
probability distribution.

In general cases, the optimization problem (8) is mathe-
matically intractable. We might employ the Cauchy-Schwarz
inequality to obtain

Γ(Hj ,Θk,Θj) ≤

√√√√E

(
p(Hj)

(
∑J−1

k=0 p(Θ
−1
k ΘjHT

j ))2

)
E(p(Hj))

(9)
where the upper bound is achievable at

p(Hj) +
∑

k 6=j,∀k

p(Θ−1k ΘjH
T
j ) = λ (constant). (10)

Such yields a necessary condition for the optimization problem
(8). Note that it is mathematically challenging to find sufficient
conditions for (8). Nevertheless, optimization based on the
necessary condition (10) is an integer linear programming
problem which is already NP hard. This renders DNN a
considerable approach helping us to find a suitable waveform
set A.

B. The Proposed Deep Learning Algorithm

Fig. 1 (b) illustrates the block diagram of the proposed
DNN architecture for the joint transmitter and noncoherent
receiver optimization. The transmitter side is modeled as a
partially-connected linear layer 1, where the weighting matrix
is partitioned into M sub-matrices Wm, 0≤m≤M−1, with each

1Here, we emphasize that Wm, 0≤m≤M−1, are not connected with each
other. Although they are jointly optimized in the learning procedure, there is
no indication of user cooperation in the communication procedure.
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corresponding to the user-specific codebook Cm, 0≤m≤M−1,
for the mth user terminal, and so Wm has the size of
(L)×(K). The input to the transmitter layer is a set of one-hot
vectors denoted by am, 0≤m≤M−1, with the size of K×1, and
am follows the uniform distribution. The output of the linear
layer is: zm = Wmam, 0≤m≤M−1, which is a column of Wm

selected by am. The ‘reshape’ component at the transmitter
side relates zm to X as: X = [z0, ..., zM−1]. After the offline
training, the linear layer will form the finite-alphabet set A
(see (4)) with an appropriate optimization. The receiver layers
play a central role for waveform classification. The input to
the receiver layers is a column vector y by reshaping the
matrix Y, and the output is a set of estimated one-hot vectors
âm, 0≤m≤M−1. The entire DNN is trained with the objective
of minimizing the difference (âm− am), 0≤m≤M−1 (equiva-
lent to the categorical cross-entropy minimization). According
to the deep learning principles [9], [10], two nonlinear layers
(1 hidden layer and 1 output layer) are sufficient for the
classification task.

Discussion on Key Novelties: The proposed DNN approach
shares the same principle as the autoencoder approach orig-
inally proposed in [6] for single-input single-output (SISO)
communications in the sense of utilizing unsupervised deep
learning for joint transmitter and receiver design. One of major
differences between the two approaches lie in:

1) The proposed DNN minimizes the use of hidden layers
at both the transmitter side and the receiver side. Such
largely reduces the DNN complexity, and mitigates the
vanishing (or exploding) gradients problem in the training
procedure. Our simulation results (see Section IV) show
that the simplified DNN structure does not introduce any
performance penalty in communications.

In addition, the proposed DNN approach is extended to the
MU-SIMO system that

2) employs a partially-connected linear layer to model
the behavior of multi-transmitter concurrent transmis-
sions. Such allows multiple transmitters’ waveform (i.e.,
Wm, 0≤m≤M−1) to be jointly optimized through the
deep learning. Thanks to the partially-connected struc-
ture, Wm can be immediately downloaded onto each
individual transmitter after the offline training, and there
is no need for user cooperation in communications.

3) employs the asymmetric DNN structure to model the
communication chain instead of using the symmetric
structure in the auto-encoder approach. Despite the use
of partially connected layer at the transmitter side, fully
connected layers are employed at the receiver side to
facilitate the multiuser joint detection. The asymmetric
DNN structure is more appropriate for modeling the MU-
SIMO system.

IV. COMPUTER SIMULATIONS AND DISCUSSION

Our computer simulations are structured into two experi-
ments with respect to the SISO and MU-SIMO communication
cases. The former is mainly focused on the comparison
with the state-of-the-art PTN-DNN approach, and the latter
introduces a novel neural network architecture which aims

to implement the MU-SIMO communication system. The
performance of the proposed DNN approach is evaluated using
the block error rate (BLER) averaging over sufficient Monte-
Carlo channel trials. The SNR is defined by the average
received bit-energy to noise ratio (Eb/N0).

Experiment 1 (DNN for SISO): Table I provides the setup
of the proposed DNN for the SISO case. Basically, an infor-
mation bit-stream is divided into a number of blocks with each
having 4 bits. Each block is represented by an one-hot vector
a0 which is fed into the linear layer. The output of the linear
layer is a (8) × (1) normalized vector; such introduces the
code rate of 1/2. The loss function is the categorical cross-

TABLE I
DNN SETUP FOR THE SISO CASE.

No. Transmitters (M ) 1
One-hot vector (a0) (16)× (1) column vector
Transmitter layer (W0) Activation function: linear; the out-

put of the linear layer is normalized
Rx Hidden layer Nonlinear layer; Activation func-

tion: ReLU
Output layer Nonlinear layer; Activation func-

tion: softmax

entropy. The communication channel is a 3-tap time dispersive
channel with Rayleigh distribution. The DNN is trained using
the stochastic gradient descent (SGD) with Adam optimizer
at the learning rate α = 0.001, β1 = 0.9, β2 = 0.999 and
ε = 10−8 (see [11] for the detailed description of parameters).
The batch size of each epoch is 1000, and the DNN is trained
at Eb/N0 = 15 dB. This configuration is in line with the
reference configuration in [6].

Fig. 2 shows the BLER performance of the proposed DNN
approach. The baseline for performance comparison includes:
the DNN-PTN approach in [6] as well as the DBPSK-MLE
with Hamming (7, 4) code. It is shown that both deep-learning
approaches outperform the conventional hand-engineered non-
coherent communication throughout the whole SNR range.
The performance gain mainly comes from the joint transmitter
and receiver optimization through deep learning. Moreover, it
is interesting to find that the proposed DNN offers slightly
better performance (around 0.8 dB) in comparison with the
DNN-PTN approach. This gain attributes to the mitigation of
vanishing gradient problem, and thus the proposed DNN gets
well trained particularly for a better transmitter design.

Experiment 2 (DNN for MU-SIMO): In this experiment,
a partially-connected linear layer is employed at the trans-
mitter side for the multi-transmitter joint optimization. At
the receiver, we divide the decoded information into several
blocks corresponding to their transmitted blocks, respectively.
The activation function for the output layer is sigmoid. The
rest of the network setup is the same as that for SISO
communications.

Fig. 3 illustrates the BLER for MU-SIMO systems with
various configurations of the MIMO size and code rate. The
MU-SIMO channel matrix is i.i.d. Rayleigh. The baseline
for performance comparison is the coherent linear minimum
mean-square error (LMMSE) MIMO receiver with BPSK
modulations at the transmitter side. For the symmetric 2-by-
2 MU-MIMO full-rate (i.e., (4,4) code rate) communications,
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Fig. 2. BLER as a function of Eb/No for the SISO case.
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Fig. 3. BLER as a function of Eb/No for the MU-SIMO case.

it is found that the DNN approach outperforms the LMMSE
receiver only at the high-SNR range (e.g. Eb/N0 > 7 dB).
This is reasonable since the LMMSE receiver has the perfect
channel knowledge for coherent detection. When the perfect
channel knowledge is replaced by the least-square channel
estimate using 4 pilots/transmitter, the DNN approach shows
better performance almost throughout the whole SNR range.
The most interesting phenomenon is that the DNN approach
is able to exploit the channel spatial diversity gain in the sym-
metric MU-MIMO case. The BLER performance improves
significantly when employing 2 more receive antennas. This
coincides with the information-theoretic result for diversity
gain [12]. In addition, it is also shown that half-rate (i.e., (8,4)
code rate) MU-SIMO significantly outperforms the full-rate
case thanks to the coding gain.

V. CONCLUSION

This letter presented a novel unsupervised deep learning ap-
proach for joint transmitter and noncoherent receiver design in
MU-SIMO systems. The principle of the proposed DNN was
mathematically studied. It was shown that the proposed DNN
offered remarkable BLER performances in Rayleigh fading
channels. When the proposed approach was applied to SISO,

it slightly outperformed the state-of-the-art in performance
whilst largely reduced the complexity due to the use of less
nonlinear layers.

APPENDIX A
PROOF OF PROPOSITION 1

In the noise-free case, the probability of missed classifica-
tion is dominated by the random channel matrix H. Suppose
that DNN has been trained to categorize Y into the group
Θj . The combinations Y = ΘkHT

k , ∀k 6=j , will be miss-
classified into the group of Θj . Then, the probability of missed
classification is

PMCNF= E
Y

(∑
k 6=j

p(ΘkHT
k |Y)

)
(11)

= E
Y

(∑
k 6=j p(ΘkHT

k )p(Y|ΘkHT
k )

p(Y)

)
(12)

= E
Y

(∑
k 6=j p(ΘkHT

k )∑J−1
k=0 p(ΘkHT

k )

)
(13)

where Bayes’ rule is employed to yield (12), and we applied
p(Y|ΘkHT

k ) = 1 and p(Y) =
∑J−1

k=0 p(ΘkHT
k ) to reach

(13). Considering Hk and Θk to be independent as well as
the condition c2), (13) reads as

PMC = E
Y

(∑
k 6=j p(Hk)∑J−1
k=0 p(Hk)

)
(14)

Here, we utilize the equation p(ΘkHT
k ) = p(Θk)p(Hk),

which is valid as Θk, ∀k, forms a finite-alphabet set. Given
HT

k = Θ−1k ΘjH
T
j , (14) is equivalent to (5).
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