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Abstract

This letter proposes a novel UAV-enabled mobile jamming scheme to improve the secrecy rate of

ground wiretap channel. Specifically, a UAV is employed to transmit jamming signals to combat against

eavesdropping. Such a mobile jamming scheme is particularly appealing since the UAV-enabled jammer

can fly close to the eavesdropper and opportunistically jam it by leveraging the UAV’s mobility. We aim

to maximize the average secrecy rate by jointly optimizing the UAV’s trajectory and jamming power

over a given flight period. To make the problem more tractable, we drive a closed-form lower bound

for the achievable secrecy rate, based on which the UAV’s trajectory and transmit power are optimized

alternately by an efficient iterative algorithm applying the block coordinate descent and successive convex

optimization techniques. Simulation results demonstrate that the proposed joint design can significantly

enhance the secrecy rate of the considered wiretap system as compared to benchmark schemes.

Index Terms

UAV communication, physical layer security, mobile jammer, trajectory design, power control.

I. INTRODUCTION

Guarantying the secrecy of wireless communications is a critical issue due to the broadcast

and shared nature of wireless channels. Cooperation based physical layer security has emerged as

a promising solution to improve the secrecy of single-antenna communication systems [1]. One

of the most common cooperative techniques for physical layer security is cooperative jamming

(see [2], [3] and the references therein), where friendly jammers are employed to collaboratively

transmit interfering signals to weaken the quality of the wiretap channel and hence enhance

the secrecy rate. However, conventional static jamming schemes assumed that the locations of
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ground jammers are fixed or quasi-static, thus giving rise to the following two major challenges.

First, the static jammers are not helpful when they are far away from the eavesdroppers, and even

decrease the secrecy rate when they are close to the destination. Second, the perfect instantaneous

channel state information (CSI) of jammer-eavesdropper link is generally required to perform

effective jamming. However, the randomness of terrestrial wireless channels (e.g., shadowing

and small-scale fading) not only degrades the jamming performance, but also makes it difficult

and even impossible to obtain accurate CSI in practice, especially when the eavesdropper is

passive.

Recently, unmanned aerial vehicles (UAVs) have been increasingly applied in wireless com-

munications [4], such as UAV-mounted BSs [5]–[7], UAV-enabled relaying [8], and UAV-aided

data collection/dissemination due to their many advantages such as cost-effective deployment,

controllable mobility, and line-of-sight (LoS) air-to-ground link. All these features provide new

opportunities to use UAVs as mobile jammers to tackle the above two critical issues in con-

ventional cooperative jamming for ground wiretap channels. First, subject to practical mobility

constraints on the initial/final locations as well as the maximum speed, a UAV employed as a

mobile jammer can opportunistically interfere with potential eavesdroppers on the ground with

more jamming power when it comes closer to each of the eavesdroppers and is sufficiently

distant away from the destination, which helps enhance the jamming performance. Second, the

LoS channel from the UAV to each ground eavesdropper brings the following two benefits as

compared to terrestrial wireless channels. One is that the channel power gain between a UAV

and an eavesdropper can be easily obtained since it only depends on their distance. Note that

the eavesdropper’s location can be practically detected via a UAV-mounted camera or radar.

Furthermore, the channel is significantly less impaired by terrestrial fading and shadowing, thus

making the jamming more effective.

Motivated by the above benefits, we consider in this letter a UAV-enabled mobile jammer for

improving the secrecy rate of a ground three-terminal wiretap channel. Specifically, subject to

both average and peak transmit power constraints as well as the UAV’s mobility constraints,

a joint UAV trajectory design and power control scheme is proposed to maximize a derived

lower bound of the achievable secrecy rate over a finite UAV flight period. To tackle the non-

convexity of the considered optimization problem, an efficient iterative algorithm is proposed

by applying the block coordinate descent and successive convex optimization techniques to find

a high-quality approximate solution. Numerical results verify that the proposed joint design



Fig. 1. A UAV-enabled cooperative jamming system.

achieves significant secrecy rate gain as compared to benchmark schemes without power control

or trajectory optimization. Notice that a secrecy UAV communication system has been recently

studied in [9], while its difference from this letter lies in that the UAV is considered as the

legitimate source in [9] instead of a cooperative jammer as in this letter.

II. SYSTEM MODEL

As shown in Fig.1, we consider a three-terminal ground wiretap system where a source S

transmits information to a destination D in the presence of an eavesdropper E. All ground nodes

are assumed at fixed locations which are known a priori. To improve the secrecy rate from S

to D, a UAV is employed as a mobile jammer to cooperatively transmit jamming signals to

combat against the eavesdropping by E over a given flight period T in second (s). Intuitively, a

larger period T in general provides the UAV more time to move closer to E to impose stronger

jamming while keeping farther away from D to cause less interference, and hence helps achieve

a higher secrecy rate.

Without loss of generality, we consider a three-dimensional (3D) Cartesian coordinate system

with the ground user i’s horizontal coordinate denoted by wi = [xi, yi]
T in meter (m), i ∈ {S, D,

E}. It is assumed that the UAV flies horizontally at a constant altitude H in m and its initial/final

horizontal locations, denoted by q0 and qF respectively, are pre-determined depending on its

take-off/landing sites or specific mission requirement. Similar to [8], the UAV’s flight period T

is discretized into N equal-length time slots each with duration δt = T/N whereby the UAV’s

trajectory over T can be approximated by a length-N sequence q[n] = [x[n], y[n]]T , n ∈ N =

{1, · · · , N}, which satisfies the following mobility constraints:

‖q[n+ 1]− q[n]‖2 ≤ L2, n = 1, · · · , N − 1, (1a)

‖q[1]− q0‖2 ≤ L2,q[N ] = qF , (1b)



where L = V δt is the maximum horizontal distance that the UAV can fly within each time slot

assuming its maximum speed is V in m/s. Notice that N (or δt) needs to be chosen sufficiently

large (small) such that L is small enough compared with H to ensure that the UAV-ground

channels are approximately constant within each slot.

We assume that the UAV-ground channels are mainly dominated by the LoS link [5], [8].

Thus, the channel power gain at time slot n follows the free-space path loss model as

hi[n] = ρ0d
−2
Ui [n] =

ρ0
‖q[n]−wi‖2 +H2

, n ∈ N , (2)

where dUi[n], i ∈ {D, E} is the distance between the UAV and ground user i in time slot n, and

ρ0 denotes the channel power gain at the reference distance d0 = 1 m.

Both ground channels for the S→ i links are assumed to be independent Rayleigh fading with

the channel power gains denoted by gi = ρ0d
−ϕ
Si ξi, i ∈ {D, E}, where ϕ is the path loss exponent

and ξi is an independent exponentially distributed random variable with unit mean. Note that δt

is generally much larger than the coherence time of ground channels, which are thus assumed

stationary and ergodic within each slot. Let PS[n] and PU[n] denote respectively the information

signal transmit power at source S and the jamming signal power by the UAV in time slot n. In

practice, they are subject to both average and peak power constraints as follows

1

N

N∑
n=1

PS[n] ≤ P̄S, 0 ≤ PS[n] ≤ PSmax, n ∈ N , (3a)

1

N

N∑
n=1

PU[n] ≤ P̄U, 0 ≤ PU[n] ≤ PUmax, n ∈ N , (3b)

where P̄S ≤ PSmax and P̄U ≤ PUmax. Thus, the average achievable secrecy rate in bits/second/Hertz

(bps/Hz) over N time slots is given by [10]

R =
1

N

N∑
n=1

[RD[n]−RE[n]]+ , (4)

with [x]+ , max(x, 0). RD[n] = E[log2(1 + gDPS[n]
hD[n]PU[n]+σ2 )], RE[n] = E[log2(1 + gEPS[n]

hE[n]PU[n]+σ2 )],

where E[·] is the expectation operator with respect to ground fading channels, and σ2 is the

independent Gaussian noise power at D or E.

III. PROBLEM FORMULATION

Let Q = {q[n], n ∈ N}, PS = {PS[n], n ∈ N}, and PU = {PU[n], n ∈ N}. Our objective

is to maximize the average achievable secrecy rate R in (4) by jointly optimizing the UAV’s

trajectory Q and the transmit power PS and PU over all time slots subject to UAV’s mobility



constraints in (1) and transmit power constraints in (3). Thus, the optimization problem can be

formulated as

(P1) : max
Q,PS,PU

N∑
n=1

(RD[n]−RE[n]) (5)

s.t. (1), (3),

where the operation [·]+ is omitted since each summation term in the objective function of

(P1) must be non-negative at the optimal solution; otherwise, the optimal value of (P1) can be

increased by setting PS[n] = 0 for any such n without violating the power constraints. Note that

(P1) is still difficult to solve due to its non-convex objective function with respect to Q, PS,

and PU. To simplify the problem, we derive a lower bound for the objective value (achievable

secrecy rate) of (P1), where RD[n] and RE[n] are replaced by their lower and upper bounds,

respectively.

Based on the convexity of ln(1 + ex) and Jensen’s inequality, RD[n] is lower-bounded by

RD[n] =
1

ln2
E [ln (1 +Xn)] =

1

ln2
E
[
ln
(
1 + elnXn

)]
≥ 1

ln2
ln
(
1 + eE[lnXn]

)
,

(6)

where Xn = angD with an = PS[n]
ρ0PU[n]

‖q[n]−wD‖2+H2+σ
2
. Since Xn is an exponential distributed random

variable with parameter λn = 1
ρ0an

dϕSD, we obtain by using eq.(4.331.1) in [11]

E[lnXn] =

∫ ∞
0

lnxλne−λnxdx = −lnλn − κ, (7)

where κ is the Euler constant. Substituting (7) into (6), the lower bound Rlo
D [n] of RD[n] is given

by
RD[n] ≥ Rlo

D [n] = log2

(
1 +

e−κγ0d
−ϕ
SD PS[n]

γ0PU[n]
‖q[n]−wD‖2+H2 + 1

)
, (8)

where γ0 = ρ0
σ2 . Due to the concavity of the function ln(1 + x), an upper bound Rup

E [n] of RE[n]

is given by
RE[n] ≤ Rup

E [n] = log2

(
1 +

γ0d
−ϕ
SE PS[n]

γ0PU[n]
‖q[n]−wE‖2+H2 + 1

)
. (9)

With (8) and (9), (P1) can be approximately transformed to the following problem,

(P2) : max
Q,PS,PU

N∑
n=1

(Rlo
D [n]−Rup

E [n]) (10)

s.t. (1), (3).

Although more tractable, problem (P2) is still non-convex with respect to Q, PS, and PU and



difficult to be optimally solved. Thus, we propose an efficient iterative algorithm to obtain a

suboptimal solution for it in the next section.

IV. PROPOSED ALGORITHM

In this section, we apply block coordinate descent and successive convex optimization to

(P2), which leads to an efficient iterative algorithm. Specifically, problem (P2) is partitioned into

three subproblems to optimize the transmit power PS and PU as well as the UAV trajectory Q

alternately in an iterative manner until the algorithm converges.

A. Subproblem 1: Transmit Power PS Optimization

For any given UAV trajectory Q and transmit power PU, problem (P2) can be written as

(P3) : max
PS

N∑
n=1

[log2 (1 + anPS[n])− log2 (1 + bnPS[n])] (11)

s.t. (3a),

where an =
e−κγ0d

−ϕ
SD

γ0PU[n]

‖q[n]−wD‖2+H2+1
, bn =

γ0d
−ϕ
SE

γ0PU[n]

‖q[n]−wE‖2+H2+1
. Although (P3) is non-convex, its optimal

solution can be expressed as [10]

P ∗S [n] =

min([P̂S[n]]+, PSmax) an > bn,

0 an ≤ bn,
(12)

where

P̂S[n]=

√(
1

2bn
− 1

2an

)2

+
1

µln2

(
1

bn
− 1

an

)
− 1

2an
− 1

2bn
, (13)

where µ is a non-negative parameter ensuring
∑N

n=1 P
∗
S [n] ≤ NP̄S, which can be found efficiently

via the bisection method.

B. Subproblem 2: Transmit Power PU Optimization

Let cn = e−κγ0d
−ϕ
SD PS[n], dn = γ0

‖q[n]−wD‖2+H2 , en = γ0d
−ϕ
SE PS[n], and fn = γ0

‖q[n]−wE‖2+H2 . For

any given UAV trajectory Q and transmit power PS, problem (P2) is reformulated as

(P4) : max
PU

N∑
n=1

[
log2

(
1+

cn
dnPU[n] + 1

)
−log2

(
1+

en
fnPU[n] + 1

)]
(14)

s.t. (3b).



Although the objective function of (P4) is non-convex, it is the difference of two convex

functions with respect to PU[n]. This thus motivates us to apply the successive convex opti-

mization technique to tackle the non-convexity of (P4) and obtain an approximate solution.

Define Pk
U = {P k

U [n], n ∈ N} as the given UAV transmit power in the k-th iteration. Since the

first term in (14) is a convex function of PU[n], its first-order Taylor expansion at P k
U [n] is a

global under-estimator [5], [8], i.e.,

log2

(
1 +

cn
dnPU[n] + 1

)
≥ Ak[n](PU[n]− P k

U [n]) +Bk[n], (15)

where Ak[n] = −cndn
ln2(dnPkU [n]+1)(dnPkU [n]+cn+1)

and Bk[n] = log2

(
1 + cn

dnPkU [n]+1

)
. With (15), problem

(P4) is approximated as the following problem for any given local point Pk
U,

(P5) : max
PU

N∑
n=1

[
Ak[n]PU[n]− log2

(
1 +

en
fnPU[n] + 1

)]
(16)

s.t. (3b).

Note that (P5) is a convex optimization problem and can be solved efficiently by standard convex

optimization solvers such as CVX [12]. Since the first-order Taylor expansion in (15) suggests

that the objective value of (P4) at Pk
U is the same as that of (P5), and (P5) maximizes the lower

bound of the objective function of its original problem (P4), the objective value of (P4) with the

solution obtained by solving (P5) is always no less than that with any Pk
U.

C. Subproblem 3: UAV Trajectory Q Optimization

For any given transmit power PS and PU, by introducing slack variables L = {l[n] = ‖q[n]−

wD‖2 +H2, n ∈ N} and M = {m[n] = ‖q[n]−wE‖2 +H2, n ∈ N}, (P2) can be written as

(P6) : max
Q,L,M

N∑
n=1

[
log2

(
1+

cn
γ0PU[n]
l[n]

+ 1

)
−log2

(
1+

en
γ0PU[n]
m[n]

+ 1

)]
(17a)

s.t. l[n]− ‖q[n]−wD‖2 −H2 ≤ 0, (17b)

‖q[n]−wE‖2 +H2 −m[n] ≤ 0, (17c)

(1).

It can be verified that at the optimal solution to problem (P6), constraints (17b) and (17c)

must hold with equalities, since otherwise l[n] (m[n]) can be increased (decreased) to improve

the objective value. Similarly, to handle the non-convexity of (17a) and (17b) with respect to



m[n] and q[n], respectively, the successive convex optimization technique is applied where the

terms log2

(
1 + enm[n]

m[n]+γ0PU[n]

)
and −‖q[n]−wD‖2 are replaced by their respective concave upper

bound at a given local point. Define Qk = {qk[n], n ∈ N} as a given initial trajectory in the

k-th iteration; then we obtain

log2

(
1 +

en
γ0PU[n]
m[n]

+ 1

)
≤ Ck[n](m[n]−mk[n]) + F k[n], (18a)

−‖q[n]−wD‖2 ≤ Gk[n], (18b)

where Ck[n] = enγ0PU[n]
ln2(mk[n]+γ0PU[n])((en+1)mk[n]+γ0PU[n])

, mk[n] = ‖qk[n] − wE‖2, F k[n] =

log2

(
1 + enmk[n]

mk[n]+γ0PU[n]

)
, and Gk[n] = ‖qk[n]‖2 − 2[qk[n]−wD]Tq[n]− ‖wD‖2.

With (18), problem (P6) is recast as

(P7) : max
Q,L,M

N∑
n=1

[
log2

(
1 +

cn
γ0PU[n]
l[n]

+ 1

)
− Ck[n]m[n]

]
(19a)

s.t. l[n] +Gk[n]−H2 ≤ 0, (19b)

(17c), (1).

Since (P7) is a convex optimization problem, it can be efficiently solved by CVX. Similarly, the

upper bounds adopted in (18) guarantee the feasible set of (P7) to be a feasible subset of (P6).

As such, the objective value of (P6) with the solution obtained from (P7) is always no less than

that with any Qk.

D. Overall Algorithm

In summary, the proposed algorithm solves three subproblems (P3), (P5), and (P7) alternately

in an iterative manner by applying the block coordinate descent method until the fractional

increase of the objective value is below a given small threshold, ε > 0. As illustrated in

Subsections A-C, the objective values of (P2) with the solutions by solving the subproblems

(P3), (P5), and (P7) are non-decreasing over iterations. Since the objective value of (P2) is

finite, the proposed iterative algorithm is guaranteed to converge.

V. NUMERICAL RESULTS

To demonstrate the performance of the proposed joint trajectory and power control design

(denoted by “J-T&P”), we compare it with two benchmark algorithms: trajectory optimization

without power control “T/NP” and line-segment trajectory with optimized power control “LT/P”.



Specifically, in “T/NP”, the transmit power of the UAV or S in each slot is set as their correspond-

ing average power, and the UAV’s trajectory is optimized by solving problem (P7) iteratively

until convergence. In “LT/P”, the UAV’s trajectory is designed in a best-effort manner: the UAV

firstly flies towards the location above E, then hovers above E, and finally flies at the maximum

speed to reach its final location by the last time slot. Note that if T is not sufficiently large

for the UAV to reach E, the UAV will turn at a certain midway point then fly towards its final

location at the maximum speed. Therefore, for “LT/P”, the pre-determined trajectory consists of

two line segments, and the power control is obtained by alternately solving subproblems 1 and

2. The parameters are set as follows: q0 = [−100, 100]T m, qF = [500, 100]T m, H = 100 m,

V = 3 m/s, wS = [0, 0]T m, wD = [300, 0]T m, wE = [200, 200]T m, γ0 = 90 dB, P̄U = 10

dBm, PUmax = 4P̄U = 16 dBm, P̄S = 30 dBm, PSmax = 36 dBm, and ε = 10−4.

Fig.2(a) shows the UAV’s trajectories versus the period T . The source S, destination D,

eavesdropper E, and the UAV’s initial and final locations are marked with ©,�,×,+, and

∗, respectively. It is observed that when T = 200 s, which is the minimum required time for the

UAV to fly from the initial location to the final location at the maximum speed, the trajectories

of the “J-T&P”, “LT/P”, and “T/NP” algorithms are identical. However, their trajectories appear

gradually different as T increases. In particular, when T = 350 s, significant trajectory differences

can be observed for the three algorithms. Specifically, for “T/NP”, it is observed that the UAV

flies along the outermost trajectory and thus spends more time on travelling than that in “J-T&P”,

whereas for “LT/P”, the UAV takes the shortest travelling time. This is because for “T/NP”, the

power control is not considered and thus the UAV tends to keep as far away as possible to avoid

causing excessive interference to D. However, for the proposed “J-T&P”, the UAV is able to

decrease (increase) the jamming power when it flies closer to (farther away from) D. Further, it

is observed that for all algorithms, the UAV first reaches a certain location (not directly above

E for “J-T&P” and “T/NP”), then remains stationary at this location as long as possible, and

finally reaches the final location by the last time slot. This is because these hovering locations

generally strike an optimal balance between degrading the wiretap channel and causing undesired

interference to the destination and hence achieve the maximum secrecy rate in each case.

Fig.2(b) shows the average achievable secrecy rate versus T where the scheme without a

jammer (denoted by “NJ”) is also considered for comparison. It is observed that the secrecy

rates achieved by all algorithms except “NJ” increase as T increases, as expected. Besides, it is

observed that the proposed “J-T&P” algorithm always achieves the highest secrecy rate while
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Fig. 2. Trajectories of UAV-enabled jammer and achievable secrecy rates.

the benchmark “T/NP” achieves even lower secrecy rate than “NJ”. Such results validate the

necessity of joint UAV trajectory and power control design for mobile jamming.

VI. CONCLUSION

In this letter, a mobile UAV-enabled jammer is employed to opportunistically jam the eaves-

dropper, thus improving the secrecy rate of the ground wiretap channel. Specifically, an efficient

iterative algorithm is proposed to maximize the achievable average secrecy rate over a given

finite period, subject to the average and peak transmit power constraints as well as the UAV’s

mobility constraints. Numerical results show that jointly optimizing the UAV’s trajectory with

source/UAV transmit power can significantly enhance the physical layer security performance of

ground wiretap channels.
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