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Abstract—We present a novel approach to maximizing the
transmission rate in a MIMO relay system, where all nodes are
equipped with multiple antennas and the relay is self-sustained
by harvesting energy. We formulate an optimization problem
and use dual-characterization to derive a closed-form solution
for the optimal power splitting ratio and precoding design. We
propose an efficient primal-dual algorithm to jointly optimize
the power allocation at source and relay for transmission and
the power splitting at relay for energy harvesting, and show that
using non-uniform power splitting is optimal. Numerical results
demonstrate the significant rate gain of non-uniform power
splitting over traditional uniform splitting especially at low source
transmit power. We also analyze our algorithm numerically and
demonstrate its efficiency at reducing the run-time by several
orders of magnitudes compared to a standard solver, and existing
algorithms in literature.

I. INTRODUCTION

With the rapid evolution of wireless networks in recent

years, energy efficiency is now an important figure of merit for

the design of next generation communication systems [1]. For

communication networks, we can envision future networks to

employ relays capable of providing cooperation in terms of

both information and energy. Prior works in joint information

and energy transfer have considered systems with multiple

antennas at the transmitting nodes and single antennas at the

receiving nodes [2] [3], or investigated systems with multiple

antennas only at the relay node [4]. While such systems can

provide throughput gains over single-antenna ones, a MIMO

system with multiple antennas at all nodes can further enhance

the system’s performance not only in terms of the achievable

rate, but also the harvested energy. New research efforts also

explore energy harvesting and communication using massive

MIMO systems [5].

Two practical designs for MIMO channels with energy

harvesting and information decoding exist in literature - Time

Switching (TS) and Power Splitting (PS) [6] [7]. In general,

power splitting has reduced transmission delay and increased

spectral efficiency compared to time switching. To simplify

the system model, a common assumption in the literature for

power splitting is that it is uniform among all antennas at

the relay node [8] [9]. While uniform power splitting can

achieve the same rate as non-uniform splitting for systems with

multiple antennas at a single node [7], for a MIMO system, it

is non-optimal.

In this letter, we present a novel optimization problem to

characterize a two hop, decode-and-forward MIMO relay sys-

tem with simultaneous wireless information and power transfer

using non-uniform power splitting. We formulate the problem

to jointly optimize both the pre-coding designs at source

and relay and the power splitting ratios at relay. Using the

Lagrangian dual problem and a sub-gradient method, we solve

the resulting convex optimization problem through a proposed

primal-dual algorithm. We contrast the performance of our al-

gorithm with existing algorithms, and compare the throughput

of our proposed non-uniform power splitting scheme to the

traditional uniform splitting. This comparison is done for an

increasing number of antennas in the MIMO system, and the

extremely low convergence time of our algorithm corroborates

how it may be computationally feasible to apply it to massive

MIMO systems.

II. SYSTEM MODEL

A. Channel Model

A half-duplex, decode-and-forward two-hop MIMO relay

system is considered, where all three nodes, source, relay

and destination, are equipped with multiple antennas. For this

letter, we assume that the direct transmission link suffers

from significant path loss and fading, such that the relay

channel is always used for data transmission from source

to destination. The source S, relay R and destination D are

equipped with Ns, Nr and Nd antennas respectively and

the S-R and R-D Rayleigh fading channels are modeled by

matrices H ∈ CNr×Ns and G ∈ CNd×Nr respectively. We

assume a quasi-static fading channel with local channel state

information (CSI) available to both the transmit and receive

nodes to reveal theoretical bounds of the problem considered.

B. Relay Model

The relay is a self-sustained node, employing a harvest-use

policy. It is equipped with two rechargeable batteries which

store harvested energy and supply power using a TS scheme

which caters for the half-duplicity of energy transfer.

The power of the received signal at each antenna of the

relay is divided for Energy Harvesting (EH) and Information

Decoding (ID), according to the power splitting ratio ρi ∈
(0, 1) ∀i ∈ [1, Nr], and we define Λρ = diag(ρ1...ρNr

). The

received signal at the relay is given by yID for information

decoding and yEH for energy harvesting as

yID = (I−Λρ)
1/2

Hxs + zr, yEH = Λρ
1/2Hxs (1)

where xs is the source transmitted signal and zr ∼
CN (0, σ2

rI) denotes the traditional receiver noise. Here we
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adopt the standard assumption of perfect power splitter [7],

and hence include no noise term for yEH.

Assuming that on average the energy consumed is equal

to the energy harvested to prevent energy-outages in the data

transmission phase [10], the transmission power for the relay,

Pr, is then equal to the harvested power, Ph. The relay

transmission power can be written as

Pr = Ph =
Eh

T/2
=

ηtr
(

ΛρHWsH
∗
)

T/2
(2)

where η , ηcηd, where ηc ∈ [0, 1] is the efficiency for energy

conversion (from RF to DC) and battery charging, ηd ∈ [0, 1]
is the utilizing efficiency for battery discharging and Ws is

the source covariance matrix. For this letter, similar to [7] we

assume without loss of generality that η = 1, unless otherwise

stated. We assume a half block (time slot) of unit duration

Ts/2 = 1, and hence use the expressions for harvested energy

Eh and harvested power Ph interchangeably in this letter.

The regenerative relay employs a decode-forward multi-

hop relaying scheme [11]. The relay recovers the message

received from the sender in each block and re-transmits it in

the following block. The signal received at the destination is

as given below

yd = Gxr + zd, (3)

where zd ∼ CN (0, σ2
dI) is the additive noise at the destina-

tion. The average transmit power constraint on the relay is

related to the harvested power in (2) as tr
(

Wr

)

≤ Pr. The

receiver then decodes on the signal received from the relay to

recover the information transmitted from the source.

C. Achievable Transmission Rate

An achievable rate for the multi-hop relay channel is given

as [11, p. 387].

R = max
p(xs)p(xr)

min{I(Xs;YID|Xr), I(Xr;Yd)}

= min{max
p(xs)

RS−R,max
p(xr)

RR−D}

where the second expression follows from application of the

first expression to the considered two-hop cascaded S-R and

R-D channel and RS−R and RR−D are achievable rates of the

first and second hop, respectively. Using the signal model in

(1) and (3), assuming optimal Gaussian transmit signals, the

achievable rate for S-D transmission, in bps/Hz, is then

R
(

Λρ,Ws,Wr

)

= min

{

max
Ws

RS−R,max
Wr

RR−D

}

(4)

= min

{

max
WsΛρ

1

2
log

2

∣

∣

∣

∣

I+
(I−Λρ)HWsH

∗

σ2
r

∣

∣

∣

∣

,max
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1

2
log

2

∣

∣

∣

∣

∣

I+
GWrG

∗

σ
2

d

∣

∣

∣

∣

∣

}

III. THROUGHPUT OPTIMIZATION PROBLEM

FORMULATION

The maximization of the achievable end-to-end transmission

rate is formulated as an optimization problem given below,

where (5b) and (5c) are the transmit power constraints at the

source and relay, respectively.

(P) : max
Λρ,W s,W r

R (Λρ,W s,W r) , (5a)

s.t. tr (W s) ≤ Ps, (5b)

tr (W r) ≤ Pr, (5c)

W s � 0, W r � 0. (5d)

Here R (Λρ,W s,W r) is the end to end transmission rate,

as defined in (4), where each hop, S-R and R-D, is a point

to point MIMO channel. Therefore, the maximum rate for the

Gaussian vector channel in each hop is achieved using spatial

multiplexing [12]. With CSI at the transmitters, the optimal

source covariance matrix has the form W⋆
s
= VHΛsV

∗
H

,

where VH is obtained from the Singular Value Decomposition

(SVD) of the channel matrix for the information decoding

receiver at the relay, (I−Λρ)H, and Λs = diag (p1...pK1
),

with the diagonal elements obtained from water-filling [13].

Similarly, for the R-D channel, W⋆
r = VGΛrV

∗
G

, with Λr =
diag (q1...qK2

) and VG is obtained from the SVD of the R-D

channel matrix G. Here K1 and K2 are the number of active

channels corresponding to the non-zero singular values of the

channel matrices H and G, respectively.

We now rewrite the optimization problem (P), as the equiv-

alent problem (P-eq) given below.

(P-eq) : max
R,ρ,p,q

R (6)

s.t. R ≤
1

2

K1
∑

i=1

log2(1 + (1− ρi)piλH,i) (6a)

R ≤
1

2

K2
∑

i=1

log2(1 + qiλG,i) (6b)

K1
∑

i=1

pi ≤ Ps (6c)

K2
∑

i=1

qi ≤
K1
∑

i=1

ρipiλH,i (6d)

Here λH,i and λG,i are the eigenvalues for the S-R and R-

D channels respectively. Implicit constraints not mentioned in

(P-eq) are pi ≥ 0 ∀ i, qj ≥ 0 ∀ j and 0 ≤ ρk ≤ 1 ∀ k.

We impose these constraints as boundary conditions in our

algorithm later on. Since the noise power is normalized to

unity, we commonly refer to the power constraint Ps in (6c)

as the SNR.

Lemma 1. The optimization problem (P-eq) is jointly convex

in the optimizing variables.

Proof. While it can be readily seen that the objective function

R is linear, constraint (6b) is affine in R and convex in qi,
constraint (6c) is affine in pi, however, joint convexity for

(6a) and (6d) in the optimizing variables (pi, qi, ρi) needs to

be established. For constraints (6a) and (6d), the left hand

side is linear in R and qi respectively, so we consider the

right hand side. For (6a) we define g1(ρi, pi) = 1 + (1 −

2



ρi)λH,ipi which is neither convex nor concave, since its

Hessian is indefinite with eigenvalues, ±λH,i. The superlevel

sets {(ρi, pi) ∈ R2
+), g1(ρipi) ≥ t}, are convex ∀ t, which

makes g1(ρipi) a quasi-concave function [14]. Applying the

implicit constraints; ρi, pi ≥ 0 then dom g1(ρi, pi) ≡ R2
+.

The composition function, f = h◦g1 in constraint (6a), of the

non-decreasing function h(x) = log(x), and quasi-concave

function g1(ρi, pi), is therefore quasiconcave. Similarly for

(6d), we define g2(ρi, pi) = ρiλH,ipi, which is quasi-concave

with convex superlevel sets in R2
+. The problem then is a

maximization of a convex function, over convex sets and

convex sub-level sets, and is therefore a convex optimization

problem.

A. Dual Problem Formulation

We use the Lagrangian dual method to solve for the optimal

solution of the primal problem (P-eq), where the Lagrangian

is formulated as given below

L(R,ρ,p,q, α, β, ν, µ) = R− α(R −R1)− β(R −R2)

− ν

(

K1
∑

i=1

pi − Ps

)

− µ

(

K2
∑

i=1

qi −
K1
∑

i=1

ρipiλH,i

)

Here α, β, ν, µ are the dual variables associated with con-

straints (6a)-(6d) respectively. Since L is a linear function of

R we use the optimality condition and set ∇RL = 0, which

gives us 1−α−β = 0 =⇒ β = 1−α. This is also intuitive,

since the transmission rate, R, is equal to the minimum of the

rate of the two hops, and is equal to either R1 or R2 or both

when R1 = R2. Substituting β = 1 − α, we can rewrite the

Lagrangian as,

L(ρ,p,q, α, ν, µ) = αR1 + (1− α)R2 − ν

(

K1
∑

i=1

pi − Ps

)

− µ

(

K2
∑

i=1

qi −
K1
∑

i=1

ρipiλH,i

)

(7)

The Lagrange dual function of (P) can be defined as

g(α, ν, µ) = maxL(ρ, p, q, α, ν, µ) with the dual problem

defined as P-Dual = min
α,ν,µ≥0

g(α, ν, µ). Since the problem is

convex, and Slater’s condition is satisfied, the duality gap is

zero, which implies that both the primal and dual variables

can be solved for as a primal-dual pair,(p⋆i , q
⋆
i , ρ

⋆
i , α

⋆, ν⋆, µ⋆).

B. Optimal Solution

Theorem 1. The optimal power allocation, p and q in the first

and second hop respectively, and the optimal power splitting

ratio, ρ, can be obtained in closed-form in terms of the dual

variables as

p⋆i =

(

α

2ν − 2µρiλH,i
−

1

(1− ρi)λH,i

)+

(8a)

q⋆i =

(

1− α

2µ
−

1

λG,i

)+

(8b)

ρ⋆i =

[

1−
1

piλH,i

(

α

2µ
− 1

)

]1

0

(9)

Proof. Obtained directly through KKT conditions by using (7)

and setting ∇pi
L = 0, ∇qiL = 0 and ∇Lρi

= 0, respec-

tively. Details omitted due to space limitation. Here (x)+ =
max(x, 0), and [x]10 = max(min(x, 1), 0) to ensure implicit

constraints pi, qi ≥ 0 and 0 ≤ ρi ≤ 1 respectively.

Remark 1. We see that qi in (8b) is as per conventional water-

filling with a constant power level, however, pi in (8a) has

varying power levels for the optimized power allocation. These

power levels are varied according to the channel eigenmodes

and PS ratios, to achieve a tradeoff between ID and EH.

Remark 2. In the expression for ρ⋆i in (9), we see that the

term 1
λH,ipi

is not constant, therefore the optimal PS ratio is

non-uniform. For comparison to the uniform PS scheme in the

next section, we evaluate ∇Lρ = 0 while setting ρi = ρ ∀i.

C. Primal Dual Algorithm

The optimal primal solution in terms of the dual variables in

Theorem 1 forms a basis for an efficient primal-dual algorithm

to solve (P-eq). Using this optimal primal solution, we obtain

the dual function, g(α, ν, µ). The problem then reduces to

minimizing the dual function in terms of the dual variables.

We can use a subgradient based method to solve for the dual

minimization problem, where the subgradient terms for the

dual variables are as given below.

∆α =
1

2

K1
∑

i=1

log2(1 + (1− ρi)piλH,i)−
1

2

K2
∑

i=1

log2(1 + qiλG,i)

∆ν = Ps −
K1
∑

i=1

pi ∆µ =

K1
∑

i=1

ρipiλH,i −
K2
∑

i=1

qi (10)

For our implementation, we use the shallow cut ellipsoid

method [14]. From the expressions for p⋆i and ρ⋆i in (8a) and

(9), we see that they are both interdependent. Therefore we

initialize the algorithm with pi,0 ≥ 0, and 0 ≤ ρi,0 ≤ 1. As

the optimal values for the dual variables are reached using

Algorithm 1, the values for the primal variables also converge

to their respective optimal values by strong duality.

IV. NUMERICAL RESULTS AND ANALYSIS

In this section, we show the performance of our proposed

method for optimal transmission in a MIMO system. We

analyze our algorithm’s convergence and also present results

on the optimality of our non-uniform power splitting scheme.

For simulations, path loss exponent γ = 3.2, noise floor

3



Algorithm 1 Solution for Rate Optimization Problem

Given: Channel Matrices, H,G, F . Precision, ǫ0
Initialize: Dual variables, α, ν, µ. Primal variables, p, ρ,

Ellipsoid shape matrix, P .

Begin Algorithm

• Use closed form expression in (9) to find ρ⋆i , if ρ⋆i is /∈ (0,1),

use boundary conditions,

◦ If ρi < 0 =⇒ set ρ⋆i = ǫ
◦ Elseif ρi > 1 =⇒ set ρ⋆i = 1− ǫ, where ǫ → 0, ǫ 6= 0

• Waterfill to find p⋆i from (8a) and qi from (8b)

• Check g(α, ν, µ) = L(ρ⋆, p⋆, q⋆, α, ν, µ)
◦ If dual variables converge with required precision, stop

◦ Else, find subgradients in (10), update dual-variables using

ellipsoid method, continue

End Algorithm

N0 = −100dBm; dsr = 2m and dsd = 10m are the distances

between S-R and R-D respectively. We show the results for

NxNxN MIMO system(s) where Ns = Nr = Nd = N .

Numerical results are averaged over 5000 independent channel

realizations, where each element of the channel matrices, H

and G, is generated as xij = (1/d)γuij with uij ∼ CN (0, 1),
d being the respective distance.

We compare our primal-dual algorithm, which uses the

ellipsoid method for updating the dual variables and closed-

form expressions to update the primal variables, with the

convex standard solver CVX. The ellipsoid algorithm uses

modest storage and computation per step, O(n2). CVX on

the other hand uses the default SDPT3 solver and a heuris-

tic successive approximation method which is several times

slower due to its iterative approach [15], and has a complexity

cost of O(n3) [16]. Figure 1 shows the stark difference in

the convergence time of our proposed algorithm and that of

the numerical solver, CVX. We present a zoomed in version

for our algorithm to show that it requires only a hundredth

fraction of time compared to CVX. For both the solver and
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than the CVX solver and the split algorithm for NxNxN MIMO system (Ps = 30 dBm)
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Figure 2: Proposed non-uniform power splitting achieves higher rate than uniform power

splitting for NxNxN MIMO system at low source transmit power (N0 = −100 dBm)

the proposed algorithm, the convergence time increases as the

number of antennas in the MIMO system are increased. We

also compare the performance to the approach in [8], where the

rate optimization problem for both hops is solved separately

as a split problem, and an iterative grid search is used to find

the uniform power splitting ratio. The convergence time for

the split-algorithm is several times more than our proposed

algorithm because of the iterative grid search, however, it is

faster than the CVX solver since we implement it using an

ellipsoid algorithm as proposed in [7].

Figure 2 shows a comparison between using optimal non-

uniform power splitting and the traditional uniform power

splitting for source transmit powers of 25 dBm and 40 dBm.

For the higher transmit power of 40 dBm, both schemes deliver

comparable performance with gradual increase in throughput

as the number of antennas (N) are increased in the NxNxN

MIMO system. For the lower transmit power of 25 dBm, the

rate gain from non-uniform power splitting is significantly pro-

nounced. This result shows that non-uniform power splitting

is beneficial at low source transmit power.

V. CONCLUSION

In this letter we formulated a novel optimization problem

to solve for the achievable rate of a wirelessly powered

MIMO relay system. We characterized the Lagrangian dual

problem and designed a primal-dual algorithm for jointly

optimizing the source and relay precoders and the relay

power splitting ratios. Our analysis showed that the optimal

throughput for the MIMO relay channel is achieved using

non-uniform power splitting and variable power allocation;

and these parameters are interdependent and are affected by

the channel eigen-modes. Numerical analysis showed that our

proposed algorithm is efficient and runs faster than the CVX

solver and existing iterative algorithms by several orders of

magnitude. Further comparison with standard uniform power

splitting revealed that non-uniform power splitting achieves

significantly higher rate at low source transmit power, and the

4



achievable rate increases with increased number of antennas

in the MIMO system.
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