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Abstract—Array processing is a key technology for emerging
mobile networks, especially in short to moderate range and
LOS scenarios. In these scenarios, the incoming wavefront can
be modeled by a spherical wave. The wavefront curvature, i.e.
Curvature of Arrival (CoA), contains position information of the
transmitter and is observable by an antenna array potentially
asynchronous and non-coherent to the transmitter. We derive
a simplified expression of the spherical wave positioning (SWP)
Cramér-Rao bound (CRB) for arbitrary centro-symmetric arrays
(CSAs), which provides a geometrical inference about the achiev-
able performance. Additionally, a low complexity CoA positioning
algorithm is proposed. In contrast to conventional methods,
the proposed algorithm requires neither multiple anchors nor
coordination between devices. It also outperforms the Fresnel
approximation based SWP algorithms by overcoming the model
mismatch. Therefore, the proposed CoA positioning algorithm is
promising for precise positioning in future mobile networks.

I. INTRODUCTION

Ubiquitous realtime position information is envisaged as a
key feature of future mobile networks, for example the 5th

generation (5G) networks, due to emerging device-centric ap-
plications [1]. Studies have been conducted on 5G positioning,
where 5G networks provide opportunities for precise posi-
tioning in global navigation satellite system (GNSS)-impaired
environments [2]. Most traditional positioning techniques ex-
ploit either time of arrival (ToA) or direction of arrival
(DoA) estimates and demand multiple anchors [3]. Recent
research has focused on positioning with a single anchor. The
simultaneous localization and mapping (SLAM) algorithm in
[4] utilizes multipath components for positioning. However, it
requires memory-intensive storage and a static environment. In
combined DoA and ToA estimation, an antenna array is used to
position a transmitter. With the far-field assumption, distance
information is obtained solely from the propagation delay of
the baseband pilot signal, whereas the DoA is estimated from
the carrier phase differences between antennas [5], [6]. For
ToA estimation, the pilot signal structure must be known to the
receiver. Additionally, synchronization between the transmitter
and the receiver must be ensured.

Large antenna arrays are widely foreseen for 5G appli-
cations, varying from dozens of antennas at mobile stations
[5] to over one hundred at local access points [7] and up to
a few thousands at base stations [1]. These arrays provides
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Fig. 1: Spherical wave positioning based on CoA.

communication coverage, from their radiating near field (a
few meters) to the beginning of the Fraunhofer region (up
to a hundred meters), to mobile devices under line-of-sight
(LoS) condition. The signal wavefront received by the array is
modeled by a spherical wave. Under this model, not only DoA
but also distance information of the transmitter is contained
in the carrier phase, which enables SWP of the transmitter
[7]–[10]. Most previous works apply the Fresnel approxima-
tion to arrays with special geometries, e.g. uniform linear
arrays (ULAs) [8]–[10], and introduce a model mismatch.
This mismatch has recently been noticed to jeopardize the
achievable positioning precision [11]. In [12] a lookup table
is used for ULA model correction. The maximum likelihood
(ML) algorithm in [7] exploits the exact model, but includes a
computationally expansive recursion. In [13] the CRB of SWP
is analyzed for special array geometries.

In this work, a simplified expression of the CRB of SWP
is derived for arbitrary CSAs, which only depends on the
relative geometry and characteristics of the antennas’ spatial
distribution. This expression provides a geometric inference
about the achievable performance and brings further insights
into array design. Additionally, we propose a method dubbed
CoA positioning, which extracts the transmitter position infor-
mation directly from the wavefront curvature. CoA positioning
overcomes the model mismatch introduced by Fresnel approx-
imation, while maintaining low complexity for realtime.

II. POSITION INFORMATION IN SPHERICAL WAVE

A single transmitter antenna is placed at point Ps, which
radiates a single-carrier signal at carrier frequency fc with
an unknown real-valued amplitude S and an unknown phase
ϕδ . The signal propagates under LoS condition to a generic
point P at distance d with speed of light c0. The signal
phase at P , ϕ = ϕδ − ωcd/c0, is a continuous function
in space, where ωc = 2πfc. The transmitter’s position in-
formation w.r.t. an observation point Po can be extracted
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from the continuous wavefield. We define a two-dimensional
(2D) Cartesian coordinate system 1 C(xy) that originates at
point Po and includes point Ps. The corresponding polar
coordinate system is defined as C(dθ). We consider the 2D
positioning problem, i.e. estimating p

(dθ)
s = [ds, θs]

T , where
ds is the distance between points Ps and Po, and θs is the
DoA w.r.t. the positive x-axis of C(xy). For the rest of the
paper, we use C(dθ) as the default coordinate system and omit
the superscript (dθ) for simplicity. The transmission phase ϕδ

and signal amplitude αs after propagation are not of interest,
but need to be estimated jointly with ps. The total parameter
vector to be estimated is χ = [pT

s , ϕδ, αs]
T . The spherical

wave intersects the xy-plane with co-phase circles centered
at Ps. The curvature of these circles contains information
about the distance to the transmitter. We apply a coordinate
transformation C(xy) Po,θs7−−−→ C(uv), where the new Cartesian
coordinate system C(uv) originates at Po and the u-axis is
aligned with θs.

Definition 1 (Signal CoA). The signal CoA κo at point Po is
defined as the extrinsic curvature of −ϕc0/ωc along the v-axis
of C(uv). With the spherical wave model, CoA is propotional
to the absolute value of the phase’s second-order derivative
and equals to the reciprocal of ds

κo , − c0
ωc

∂2ϕ

∂v2

∣∣∣
Po

=
1

ds
. (1)

The distance information can be extracted from the second-
order derivative of the signal phase. The DoA needs to be
estimated prior to coordinate transformation. In practice, a 2D
antenna array on the xy-plane, potentially asynchronous and
non-coherent to the transmitter, with L elements centered at Po

is used to sample the continuous wavefield at discrete spatial
points. An element l, l = 1, . . . , L, located at point Pl, receives
the baseband signal 2

rl(t) = αse
jϕδe−jωcdsl/c0 + nl(t), (2)

where nl(t) ∼ CN (0, σ2) is an i.i.d. circularly-symmetric
complex normally distributed noise process. According to the
geometry under investigation, dsl can be expressed as

dsl =
√
d2s + d2l − 2dsdl cos(θl − θs) . (3)

The received samples rl are acquired at an arbitrary time point,
coherently at all elements, with a received sample phase ϕl.
The concept of the SWP with CoA is illustrated in Fig. 1.

III. FUNDAMENTAL LIMITS OF SWP

The Fisher information matrix (FIM) of χ can be calculated
from the given model (2) and (3), similarly as in [13]. The
covariance of the transmitter position estimate COV[p̂s] is
bounded by the CRB, CRB[ps], which is obtained by apply-
ing the Schur complement [6] to the position corresponded

1The coordinates of a specific point Pϵ in a coordinate system C(ξψ) are
defined as p

(ξψ)
ϵ = [ξϵ, ψϵ]T , where ξ and ψ are the two dimensions of that

coordinate system. The subscript ϵ is omitted for generic points P .
2We assume the array aperture to be much smaller than ds. Therefore, the

distance-related attenuation differences among elements are negligible.

sub-matrix of the FIM. Assuming free-space pathloss, i.e.
αs = Sc0/2ωcds, the positioning CRB states

COV[p̂s] < CRB[ps] =
2σ2d2s
S2

×
(( L∑

l=1

∂dsl
∂ps

∂dsl
∂pT

s

)
− 1

L

L∑
l=1

∂dsl
∂ps

L∑
m=1

∂dsm
∂pT

s

)−1

. (4)

To infer the geometry impacts on SWP, we first investigate
the symmetric linear array (SLA) case. An SLA is deployed
along the x-axis, with L elements and an aperture length A.
We define the kth moment of the normalized antennas’ spatial
distribution Mk =

∑L
l=1(dl/A)

k/L, and the effective aperture
length Ã = A sin θs, to characterize the array geometry.

Theorem 1 (CRB of SWP for SLA). For the SLA, assuming
L ≫ 1 and ds ≫ A, the CRB of DoA estimate can be
approximated by

CRB[θs] ≈
2σ2d2s

S2LÃ2M2

, (5)

whereas the distance CRB is approximated by

CRB[ds] ≈
2σ2d2s
S2

4d4s
LÃ4(M4 −M2

2 )
. (6)

Proof. See Appendix.

The array’s aperture is often physically constrained by
applications. For a fixed A, more elements can be deployed for
higher carrier frequencies, without resulting in severe antenna
mutual coupling. Both CRBs in (5) and (6) linearly decrease
with the number of elements L, which shows a benefit of
higher fc, such as foreseen in 5G. The term 2σ2d2s/S

2 shows
the effect of the signal-to-noise ratio (SNR). The CRB for
DoA decreases quadratically with Ã and linearly with M2,
the antennas’ spatial spread. The distance CRB experiences a
quartic growth with the ratio ds/Ã, indicating a strong impact
from the relative geometry. Additionally, it decreases with
M4 −M2

2 , i.e. the shape of the antennas’ spatial distribution.
More importantly, when θs = 0 ◦, both CRBs approach
infinity. Hence the array’s aperture expanded in u direction
contains no information of the transmitter’s position. With
the last observation, we extend Theorem 1 to arbitrary 2D
CSAs. Many typical arrays are centro-symmetric, e.g. uniform
circular/linear arrays, the ones in [13], as well as the uniform
rectangular array (URA) illustrated in Fig. 1.

Corollary 1. A CSA centered at P0 can be projected on the
v−axis, forming a virtual SLA. The positioning CRB can be
approximated by applying Theorem 1 to the virtual SLA.

Proof. Since the aperture expanded in u direction does not
contain position information, the projected virtual linear array
along v−axis is equivalent to the original CSA in the sense
of SWP. By the definition of centro-symmetry, for any non-
centered element l with position pl = [dl, θl]

T , there exists an
element m with position pm = [dl, θl + π]T . Elements l and
m are projected on the v−axis at ±dl sin(θl−θs) respectively
and are symmetric w.r.t. P0. Hence the projected array is an
SLA, which meets the condition of Theorem 1.
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IV. LOW COMPLEXITY COA POSITIONING ALGORITHM

We propose a low complexity CoA positioning algorithm,
which avoids recursions and reduces the model error from
the Fresnel approximation. It can be applied either directly
as a realtime positioning variant or to initialize a recursive
algorithm like an ML estimator [7].

We define tiles Ti composed of at least three adjacent
antenna elements and centered at points Pi. The estimated
local DoA θ̂si can be calculated by traditional far-field DoA
estimation methods [14], applying the plane wave model on
all applicable antenna pairs l,m in Ti

ϕlm ≈ −eTsiplmωc/c0, ∀dlmωc/c0 < π/2, (7)

where plm = p
(xy)
l − p

(xy)
m , ϕlm = ϕl − ϕm and esi =

[cos θsi, sin θsi]
T . To estimate the tile’s curvature κi, a coor-

dinate system C(uivi) local to Ti is defined as C(xy) Pi,θsi7−−−−→
C(uivi). The second order derivative of phase local to Ti can
be approximated by a double difference with three adjacent
elements l,m and n, which leads to a curvature estimate as

κ̃lmn = 2
△lm − △mn

vlm + vmn
, where △gh=

ϕghc0/ωc + ugh

vgh
,[

ugh

vgh

]
=

[
êTsi
êTsi,⊥

]
pgh and êsi,⊥ =

[
sin θ̂si

− cos θ̂si

]
.

The coarse estimate of the tile’s curvature κ̃i is obtained by
averaging κ̃lmn over all the effective combinations of l,m and
n, i.e. ∀ l,m, n, where |vlm|, |vmn| and |vlm + vmn| ≫ 0.
The curvature estimated from a single tile is heavily distorted
by noise. To get a stable estimate, an extra smoothing step is
applied, exploiting the geometry equality

p(xy)
s = κ−1

i esi + p
(xy)
i =

∑
∀Ti

esi + κip
(xy)
i∑

∀Ti
κi

. (8)

The tile’s curvature estimate can be refined as

κ̂i =
∥∥∥(∑

∀Tj

κ̃j

)−1(∑
∀Tj

êsj + κ̃jp
(xy)
j

)
− p

(xy)
i

∥∥∥−1

. (9)

Finally, the transmitter’s position can be estimated by replacing
θsi and κi in (8) with their estimates θ̂si and κ̂i .

V. NUMERICAL RESULTS

We simulate SWP with three different arrays orientated
along the x-axis: a URA with aperture size in each dimension
Ax = 1.5m, Ay = 0.3m and two ULAs with aperture
lengths 0.3 m and 1.5 m. All arrays have λ/4 antenna spacing.
The tiles are constructed by 3 × 3 elements for the URA
and 1 × 3 for the ULAs. A single antenna transmitter is
deployed at distances from 1 m to 100 m and with DoAs from
0 ◦ to 90 ◦, transmitting a single-carrier signal with 10 dBm
transmit power at 1 GHz carrier frequency. Free-space pathloss
and a noise variance of −123.2 dBm are assumed. For each
parameter set 100 Monte Carlo runs have been conducted.

First the performance of the URA is assessed. Fig. 2 shows
the root mean square errors (RMSEs) of CoA positioning and
a CoA initialized ML estimator, as well as the exact and
approximated CRBs. With increasing ds, the CoA positioning

(a) DoA estimation error

(b) Distance estimation error

Fig. 2: A URA along x-axis with Ax = 1.5m, Ay = 0.3m,
fc = 1GHz and spacing of λ/4.

RMSEs first decrease due to a decreasing model error and then
increase because of the reducing SNR and worsen geometry.
For small ds, the model error varies with θs, but only leads
to small estimation errors. By applying an ML estimator in
addition, the RMSEs approach the CRBs. When both ds and
θs are small, a slight Taylor approximation error from (10)
is observed for the distance CRB. At most of the evaluation
points, approximated and exact CRBs coincide, which verifies
Corollary 1.

Next we compare the CoA positioning to traditional low
complexity SWP algorithms with the ULAs, since most algo-
rithms apply the Fresnel approximation on ULAs, [8], [10].
To remove the outliers occurring at small θs, the RMSEs are
calculated only for DoAs range between 30 ◦ and 90 ◦. Fig. 3
shows the performance of CoA positioning, the Fresnel based
approach in [10], the CoA initialized ML estimator and the
CRBs for different ds. The Fresnel based approach estimates
the DoA with the plane wave model, like the traditional far-
field DoA estimation. The Fresnel based approach has a larger
model error for larger arrays. In contrast, the CoA positioning
only experiences model mismatch within individual tiles, inde-
pendently of the total aperture. Therefore, the CoA positioning
outperforms the Fresnel based approach for shorter distances
and larger arrays. At larger distances, the model error is no
longer dominant and all algorithms perform similarly along
the CRBs. For the 0.3 m ULA at small θs and ds > 50m, the
ratio ds/Ã is so small, that none of the three algorithms is
able to effectively estimate the distance. As a final result, for
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Fig. 3: Two ULAs along x-axis with A = 0.3m and 1.5m,
fc = 1GHz and spacing of λ/4.

a 1.5 m sized array, the distance estimate can be achieved with
a sub-meter RMSE by the CoA positioning up to 50 m, which
meets the accuracy expectation of 5G suggested in [2]. The
CoA initialized ML estimator extends the applicable distance
to 100 m.

VI. CONCLUSION

We proposed a CoA positioning algorithm, where the
transmitter position is directly estimated from the wavefront
curvature. Compared to conventional methods, CoA posi-
tioning does not require multiple anchors, synchronization,
nor coordination between communication entities. Simplified
CRBs show that for an arbitrary CSA, the achievable SWP
performance only depends on the relative geometry and mo-
ments of the antennas’ spatial distribution. Numerical results
prove that the low complexity CoA positioning is effective
for the considered applications and outperforms the Fresnel
approximation based algorithms by overcoming the model
mismatch. Hence, the proposed CoA positioning is suitable
for realtime transmitter positioning in 5G.

APPENDIX

We apply the second-order Taylor expansion to dsl at dl = 0

dsl ≈ ds − dl cos(θl − θs) +
1

2
sin2(θl − θs)d

2
l /ds (10)

and define al , 1− d2l sin
2 θs

2d2s
and bl ,

d2l sin θs cos θs
ds

.

By exploiting the symmetry of SLAs, we can write

L∑
l=1

∂dsl
∂ps

L∑
m=1

∂dsm
∂pT

s

≈


( L∑

l=1

al

)2 L∑
l=1

al

L∑
m=1

bm

L∑
l=1

al

L∑
m=1

bm

( L∑
l=1

bl

)2


and
L∑

l=1

∂dsl
∂ps

∂dsl
∂pT

s

≈
L∑

l=1

(
a2l albl
albl d2l sin

2 θs + b2l

)
.

The CRB of ps can be derived as

CRB[ps] ≈
2σ2d2s

S2LÃ4(M4 −M2
2 )

×

(
d−4
s /4 cot θsd

−3
s /2

cot θsd
−3
s /2 Ã−2M2

M4−M2
2
+ cot2 θsd

−2
s

)−1

. (11)

The CRB of DoA in (5) can be directly obtained by taking the
second diagonal entity of (11). The distance CRB is derived
by taking the first diagonal entity of (11)

CRB[ds] ≈
8σ2d6s

S2LÃ4(M4 −M2
2 )

(
1 +

(M4 −M2
2 ) cot

2 θs

(ds/Ã)2M2

)
.

(12)

Equation (6) is obtained from (12) with the assumption ds ≫
Ã, which completes the proof.
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